Chapter 3

 $Seaside\ sparrow$

Affected Environment

- Introduction
- Refuge Management Units
- Physical Environment
- History of Vegetation on and Around the Refuge
- Refuge Vegetation Resources
- Influence of Climate Change on Physical Environment and Refuge Management
- Biological Resources of Delaware Bay Estuary
- Refuge Biological Resources
- Socioeconomic Environment
- Refuge Administration

Introduction

We begin this chapter with a brief description of the refuge management units to provide a context for the discussions that follow. Then we describe the surrounding physical environment, which includes the refuge's geographic setting, its hydrogeomorphic features, soil information, and air and water quality. Next we describe the role of prehistoric and historic climatic influences, cultural setting and land use history in and around the refuge (EIS project area). We also review Delaware's remaining natural habitats and the historic context of the refuge's wetlands as they have been influenced by human activity and management. We finish the description of the physical environment by summarizing the vegetation communities on the refuge.

Rapid climate change is proving to be the defining conservation issue of the 21st century, and climate change adaptation strategies used by the refuge must anticipate an increasingly different physical environment than the one we have managed in the 20th century. To that end, this chapter also contains extensive reviews of the relevancy of global climate change, sea level rise, local coastal storm activity, refuge shoreline dynamics, and vulnerability assessments of some of the refuge's coastal habitats. These factors influence the physical environment of the refuge, but also are directly related to the conservation and management of the refuge's fish, wildlife, and plant resources in the near future. We also investigate, throughout the remaining chapters of this CCP, how sea level rise is likely to affect the refuge's wetland habitats and clarify how managing for and facilitating ecological transitions in the refuge's physical environment will be an increasingly significant part of our adaptation to climate change.

Next we represent the biological environment of the surrounding area. We describe the biological resources within the context of the Delaware Bay Estuary, associated with the current condition of the refuge's plant and animal populations. We also map out the different vegetation communities found on the refuge and their associated rare plant species relationships. We end with an analysis of the socioeconomic environment of the refuge, including the economic benefits of refuge visitation to local communities and refuge administration details.

Refuge Management Units

The refuge can be described as an elongated coastal strand covering 10,144 acres that lies parallel to the Delaware Bay. For management purposes and to facilitate understanding of the descriptions of habitats and biological resources within management areas, Prime Hook NWR is divided into four management units delineated by four State roads which transect the refuge and run perpendicular to the bay (map 1-1).

UNIT I. This area comprises the northern most end of the refuge and is delineated by Slaughter Beach Road as its northern boundary, overwashed barrier dunes and a portion of the Slaughter Beach community houses on the east, Fowler Beach Road on the south, and an upland fringe of scrub-shrub areas on the western boundary. There is currently no water level management capability in Unit I, which contains about 1,400 acres of salt marsh. Tidal salt water is the primary source of water for the unit, which flows approximately two miles from the Delaware Bay through the Cedar Creek at the Mispillion Inlet and into Slaughter Canal. An overwash formed on the coast of Unit I in 2006, creating a small inlet, creating more direct flow of saline bay water into Unit I.

UNIT II. This management unit is just south of Unit I. It is bounded by Fowler Beach Road on the north, artificial barrier dunes and a sand dike connected to the Prime Hook beach community on the east, Prime Hook Road on the south, and an upland interface on the west. During storm tides, this sand dune system

has been breached several times and washouts have deposited sand and salt water into the Unit II impoundment.

UNIT III. Management Unit III is bounded by Prime Hook Beach Road on the north, Route 16 (Broadkill Beach Road) on the south, upland edge on the western boundary, and the Prime Hook and Broadkill Beach developments immediately adjacent to the refuge's eastern boundary. Unit III consists of roughly 3,600 acres, which include impounded freshwater emergent marsh, red maple-seaside alder swamp, low-lying farmed areas, brush, barrier beach on the east, and 140 acres of flowage easement on the southeastern boundary of Unit III. This flowage easement drains directly into Prime Hook Creek and flows south to the water control structure of this watercourse.

UNIT IV. Management Unit IV is surrounded by Route 16 on the north, the Broadkill Beach community on the east, the Broadkill River on the south and west, and the upland edge on the west. The majority of water and tidal action associated with Unit IV is provided by the Broadkill River, whose salinity ranges from 10 to 30 ppt. Prior to Service ownership, this marsh had been excessively drained by man-made ditches. Rainfall and runoff from Unit III are other sources that provide fresh water. Due to the strong influence of the Broadkill River, this impounded area has a more brackish character with salinities ranging from 5 to 20 ppt.

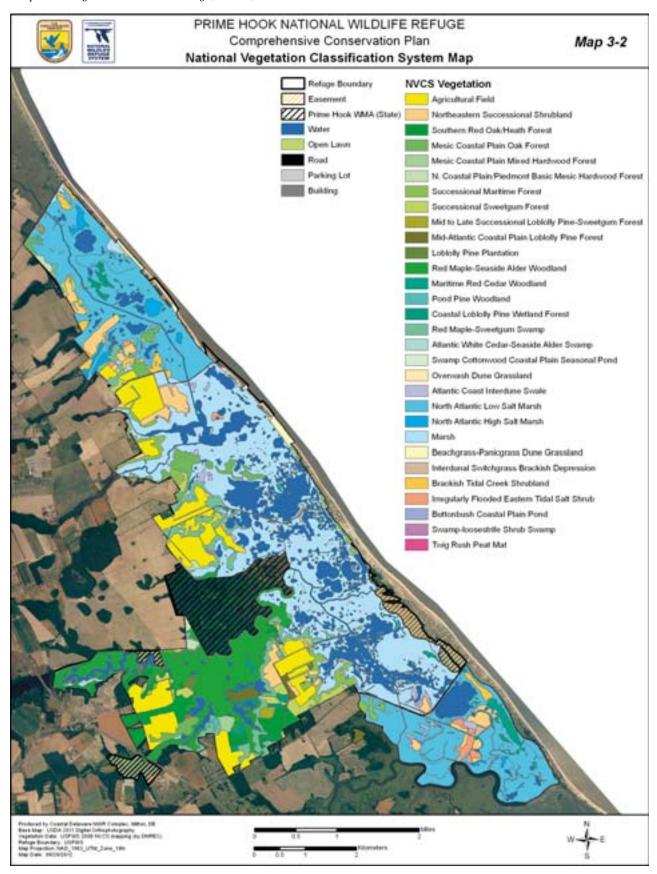
Further details regarding the soils, hydrological features, wetland and management history, and vegetation of each of these four management units are provided later in this chapter.

Physical Environment Geographic Setting


The refuge is located in Sussex County, Delaware, within the Atlantic Coastal Plain Province, along the southwestern shore of the Delaware Bay. It is part of Bird Conservation Region 30, which encompasses the New England/ Mid-Atlantic Maritimes and the Partners in Flight Physiographic Region 44 (BCR 30 and PIF 44). Prime Hook NWR is one of two refuges of the Coastal Delaware NWR Complex. The refuge was established in 1963 and historically consisted of tidal marshes and agricultural lands that were grazed by cattle. The landscape surrounding the refuge was dominated by small farms producing vegetables and small grains. From the 1990s to present day, beach and residential development and intensive agricultural operations (corn, soybean, and poultry production) are the dominant land uses bordering the refuge.

The four roads that bisect the refuge have significantly altered the hydrology and other ecological processes of the refuge's wetland habitats. The two interior roads, Fowler Beach and Prime Hook roads have the greatest hydrological impacts on the refuge's impounded marsh complex and management actions. These roads, with their associated culverts and water control structures located in Units II, III, and IV, are directly linked to the refuge's water level management capabilities (map 3-1).

The refuge is representative of the natural vegetation of the Delmarva Coastal Plain ecosystem which is dominated by emergent wetlands interspersed with swamp and forested upland, grasslands and open water habitats. Eighty percent of Prime Hook NWR's vegetation cover types are shaped by tidal and freshwater creek drainages that discharge into the Delaware Bay with associated coastal barrier island habitats. The remaining twenty percent are composed of upland habitats. National Vegetation Classification Standard (NVCS) cover typing of the refuge has resulted in the delineation of 37 land cover types including vegetation and anthropogenic communities and water surface coverages (map 3-2).


Map 3-1 Physical Environment

Map 3-1. Impoundment Management Overview

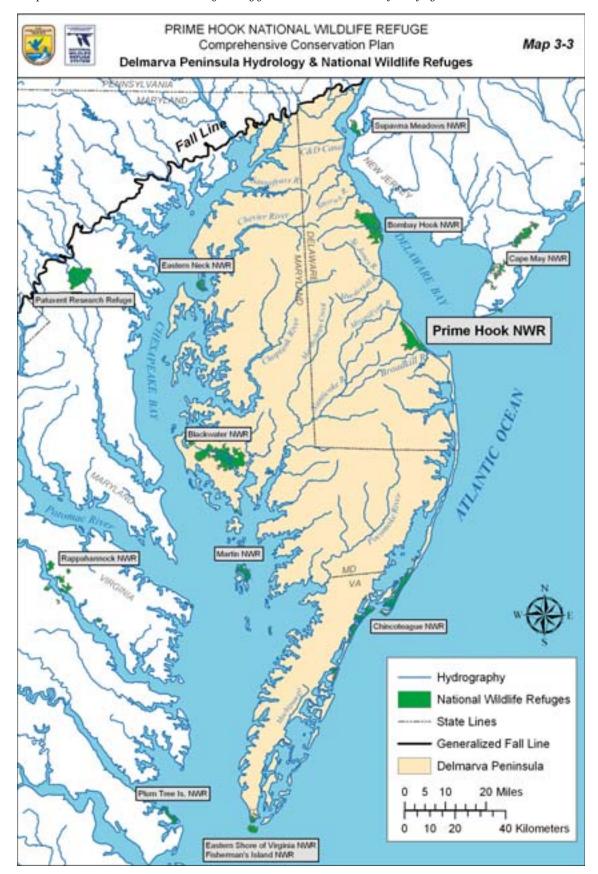
Map 3-2 Physical Environment

Map 3-2. Vegetation Community (NVCS) Overview

Other natural wildland habitats and managed wetlands immediately adjacent to or near Prime Hook NWR include:

- The Great Marsh (1,000 acres of salt marsh, owned by the town of Lewes) located just south of the refuge
- Milford Neck WMA (5,459 acres), 3 miles north of the refuge above Mispillion Inlet
- Ted Harvey Conservation Area (2,661 acres), 9 miles north of Prime Hook NWR above Bower's Beach
- Little Creek WMA (4,721 acres), 15 miles north of Prime Hook NWR above Port Mahon
- Prime Hook WMA (698.2 acres), adjacent to Prime Hook NWR
- Bombay Hook NWR (16,000 acres), 25 miles north of the refuge

Geology and Hydrology


Past geological events in Delaware have created two distinct physiographic provinces; the northernmost 5 percent is in the Appalachian Piedmont Province and the Atlantic Coastal Plain Province covers the remaining 95 percent. Appalachian mountain building episodes between 500 and 200 million years ago formed the Piedmont, which is composed of metamorphosed, igneous, and sedimentary rocks. The Piedmont region is characterized by low, rolling hills and steeply incised stream valleys. A fall zone occurs at the junction of the Piedmont and Coastal Plain in the proximity of Route 2, Kirkwood Highway, in New Castle County, which is an ecological transition area between these two provinces (Thompson 1976) (map 3-3).

The Coastal Plain Province lies south of the fall line and makes up the vast majority of the State's land area, including the refuge. Much younger than the Piedmont, the coastal plain consists of unconsolidated sediments that have accumulated as a result of erosion of the Appalachian Mountain chain, and marine sediments deposited as a result of frequently fluctuating sea levels. The deposition of the unconsolidated sediments of the coastal plain began 120 to 150 million years ago. Eroded water-borne sands, silts, and clays were deposited, followed by marine sediment shifting during periods alternating between sea encroachment and retreat. With the advance and retreat of continental glaciers and dramatic changes of sea levels, the flowing sediments were capped by fluvial sands and gravels during the Pleistocene (1.8 million years ago). During the past 10,000 years, rising sea level has filled coastal valleys with sediment, forming extensive tidal marshes. The coastal plain today is a region of little topographic relief, with broad, slow-moving streams and extensive tidal estuaries (Hess et al. 2000).

About 5,000 years ago, the current refuge shoreline was located 3 to 4 miles east of its current position, resting what is now in the middle of the Delaware Bay. Retreating shorelines and rising sea levels systematically began to drown the ancient Delaware River valley, gradually transforming the narrow river into the wide Delaware Bay as it is currently shaped. Atlantic Coastal Plain creeks and streams meander broadly in shallow channels and the landscape is generally flat, with elevations ranging from sea level to 125 feet. The highest point in Delaware is 448 feet, located north of Wilmington near the Pennsylvania State line (Ebright Azimuth). Prime Hook NWR has very flat terrain typical of Atlantic Coastal Plain areas. The highest point within the refuge is about 15 feet mean sea level but the majority of refuge lands lie below the 9-foot contour. The uplands are gently sloping with very few steep grades; these are mostly limited to areas immediately adjacent to drainage ditches and creeks.

Physical Environment Map 3-3

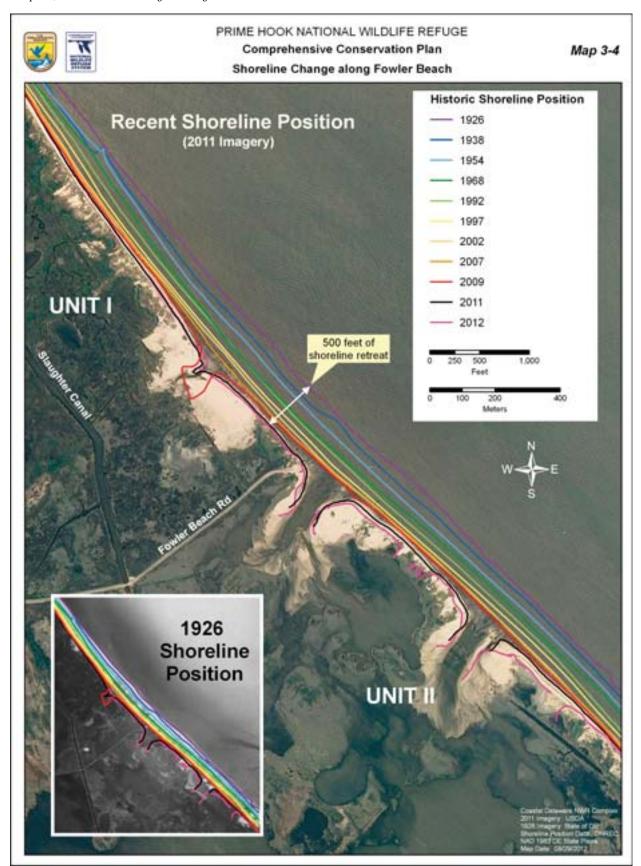
Map 3-3. Delmarva Peninsula Hydrology and National Wildlife Refuges

Along the immediate shoreline of the refuge's barrier island habitats from Slaughter Beach to Prime Hook Beach, the topography is highly variable. Natural dune ridge areas sloping away from mean high water level of the Delaware Bay vary from 1 to about 10 feet, interspersed with overwash areas ranging from 0.5 to 3-foot elevation contours based on DNREC topographic maps of Delaware beaches (1979). Short-term geological events like coastal storms and long-term geological processes of marine transgression and landward movement of the coastline have and will continue to constantly change coastline position and elevations along the refuge's sandy beach ecosystem (map 3-4).

The directional flow of Delaware's rivers south of the Piedmont is dictated by a dividing ridge, which is a visually unimpressive land form that rises only a few feet above the surrounding countryside. Acting as the watershed of central and southern Delaware, the dividing ridge bisects the State so that all of flat Delaware's significant river systems flow eastward into the Delaware Bay or the Atlantic Ocean, with the exception of the Nanticoke River, which drains into the Chesapeake Bay (map 3-3).

The directional flow of water bodies and upland runoff drainage patterns traveling eastward toward the Delaware Bay places the refuge at the receiving end of watershed runoff and stream flows. Therefore heavy rainfall events not tied to coastal storm events can also have significant impacts on the refuge's physical environment.

The geology of the Delaware Bay's coastline is part of larger geological structure known as the Atlantic coastal plain-continental shelf geosyncline. This shoreline of the entire lower Delaware Bay is migrating in geologic time, in a landward direction. This is caused by many geological processes. The first is subsidence or sinking. The continental shelf and Atlantic Coastal Plain are known to be subsiding. The second process is sea level rise relative to the land. A third coastal process is the erosion and redistribution of sediments in the active coastal littoral zone as the shoreline shifts in a landward and upward direction (Kraft et al. 1976).


The Beers Atlas (1868) showed the two creeks (Prime Hook and Slaughter) feeding freshwater through the marsh system flowing directly through the barrier beach into the Delaware Bay. These outlets provided unimpeded flows of freshwater from the uplands to the west; they also provided ample primary inlets for the saline waters of the Delaware Bay to inundate the lowland marshes on each high tide.

Overtime, however, with changes in the Delaware Bay shoreline, these inlets would occasionally close with sand, stopping the general eastward flow of water from the uplands. This interferred with the drainage and ultimate cultivation of the lands bordering the marshes. Around 1911, both outlets were sealed shut by a storm. The Broadkill River meandered to a new outlet two miles south. This new outlet was later improved by man and called the rossdvelt Inlet. Prime hook Creek ended, which histocially flowed near California Ave in the Broadkill community, In Unit III marsh with the Petersfield Ditch then taking over as the major water outlet emptying into the Broadkill River.

Attempts were made, first at the outlet of Slaughter Creek on the northern end of the marsh to build structures that would keep the natural outlets of the creek open to the Delaware Bay. This project was subsequently abandoned and a new, man-made channel, Slaughter Ditch, was dug. This ditch carried the waters of Slaughter Creek and Cedar Creek into the Mispillion River.

Physical Environment Map 3-4

Map 3-4. Shoreline Change Along Fowler Beach

As with Slaughter Creek, the mouth of Prime Hook Creek also closed premanently. With no major draingage outlet, therefore the freshwaters flowing off the uplands backed up over the marsh extending flood waters from Broadkill Road to Fowler Beach Road.

Origin and Evolution of Estuarine Washover Barriers of Delaware Bay and the Refuge

Initiation of sandy barriers along the shoreline of the Delaware Bay requires a source of coarse-grained sediment, and sufficient wave and current energy to redistribute sediments to the nearshore zone. Evolution of the estuarine barrier island habitats along the bay varies spatially and temporally as factors change in space and time. Field observations and analysis of historic data suggest that wave erosion of pre-Holocene headlands and longshore transport of sediment are the principal mechanisms for estuarine barrier formation. A conceptual model representing three stages of the development of estuarine barrier islands along the western shore of the Delaware Bay, including the project area, has been described (Maurmeyer 1978). This sequence is controlled by pre-Holocene topography and variable rates of sea level changes represented by the following stages:

- (1) Initial formation of barrier as a beach abutting a pre-Holocene headland
- (2) Salt marshes surround the headland as sea level rises and long-shore transport of sand forms barriers against marshes
- (3) Burial and/or erosion of headland as sea level rises; barrier migrates landward and upward across marshes by overwash

At the present time, stage one occurs on the northern barriers of the bayshore to Bowers Beach. Stage 2 occurs in the vicinity of headlands surrounded by marshes such as Woodland Beach, Kitts Hummock, and Big Stone Beach, along centrally located barriers along the bay shorelines. However, most of the southern barriers along the western shore of the bay are in the third stage and are dominated by overwash processes, including the refuge (Maurmeyer 1978).

Rates of Coastal Change of the Delaware Bay Shoreline

Hydrogeomorphic studies conducted by University of Delaware coastal scientists provide a baseline about the rates of shoreline transgression or migration landward of Delaware Bay shorelines. Over the 120-year period from 1834 to 1954, the Bay shoreline from Slaughter Beach to Roosevelt Inlet retreated at a rate of from 1 to 25 feet per year. The refuge lies just below the Slaughter Beach community location, and the shoreline position bracketing the refuge has experienced a total change of -1,100 feet or roughly a loss of about 10 feet/year on average (Kraft et al. 1976).

This is one of the higher erosion rates along the bayshore and similar to Slaughter Beach coastal change rates. The only two areas along this stretch of the Delaware Bay shorelines that have been or are presently accreting are the Broadkill Beach groin field and the area behind Cape Henlopen near the Lewes Breakwater. Most shoreline erosion in the Delaware Bay is caused by waves generated across the Bay by local winds. Wave velocities during normal and storm events push excessive water onto the shore. The highest rates of erosion tend to occur in areas where marsh sediments and old remnant peat covered by sand form the shoreline (Kraft et al 1976). These coastal change rates serve as a fairly precise baseline indication of the present and future refuge shoreline rates of erosion. However, a 10 foot/year rate may be too conservative in light of recent and predicted future climate change and sea level rise rates as discussed later in this chapter.

Refuge Water Level Information

Throughout the refuge, water levels change on time scales that range from minutes to thousands of years. Daily water level changes due to astronomical tides for both Mispillion and Roosevelt inlets vary from -0.7 to 5.8 feet. Even on short time scales (minutes, hours, days), wind energy and wind stress can increase water level changes to deviate significantly from astronomically predicted levels. The coastal geology of an area, bay morphology, and bathymetry are factors that influence and constantly change the periodicity and magnitude of refuge water level changes from day to day under normal conditions and with large variations during storm events. Even coastal storms that never make landfall can cause refuge water levels to change in excess of those normally predicted monthly variations in the lunar phase.

Based on averaged predicted tidal fluctuations and other geological factors, the refuge coastal zone can be characterized as a mesotidal (between 2 to 4 meters) coastal area. Massilink and Huges (2003) define coastal zone tidal ranges as microtidal (0 to 2 meters), mesotidal and macrotidal (greater than 4 meters).

Water level ranges are much more restricted within refuge impounded marshes. However, correlations between impoundment water levels are difficult to make because the Unit II water control structure was surveyed in its present location in 1988, referencing the National Geodetic Vertical Datum of 1929 (NGVD 29), and the Units III and IV water control structures were surveyed into location, including staff gauge positioned on the concrete structures, in 1984 and 2005 respectively, using a tidal (mean sea level) datum. Because the water gauges used to measure water levels in the impoundments do not all reference the same elevation datum, it is currently difficult to make direct comparisons between water level measurements in different impoundments for water management purposes.

The soils of Delaware are made up of differing combinations of sand, silt, and clay. Sand was the most abundant of the three components, proportionally increasing from the Christiana Valley to Sussex County. The soils of eastern Kent and Sussex Counties from the coast to 10 miles inland tend to have more clay and less sand components than soils located further west, especially those areas flanking the dividing ridge.

The soils of the Piedmont, which are derived from the underlying gneiss and schist bedrock, are older and tend to be more fertile than soils of the coastal plain. Piedmont soils in the valleys are rich and loamy, while the soils at higher elevations are often eroded and stony. The soils of the coastal plain vary a great deal depending on geography and habitat. Sandy soils dominate much of the region, but areas of clay or loamy texture are not uncommon. Soil drainage ranges from that which is excessively drained in beach sands and on sand ridges, to very poorly drained soils in tidal marsh and swamp muck (Matthews and Ireland 1974).

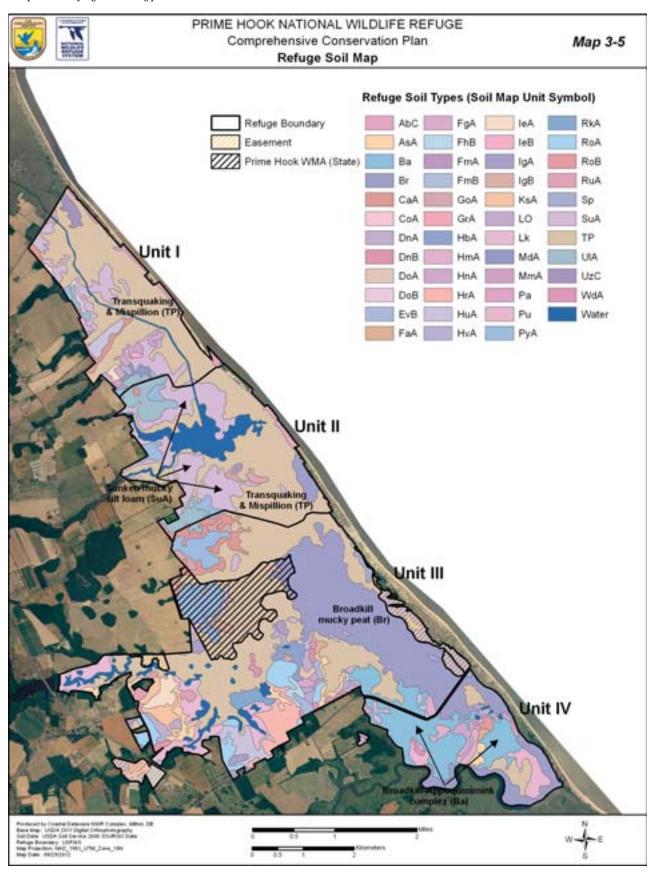
Delaware's soils are classified into four major soil orders: Ultisols (well developed, acidic mineral soils), Histosols (organic soils), Inceptisols (mineral soils in early development) and Entisols (mineral soils in late development). They are grouped into associations by location, drainage characteristics, and parent material. A soil association is a landscape that has a distinctive proportional pattern of soils. It consists of one or more major soils and at least one less extensive soil, and it is named for the major soils. Two major associations found within the refuge include the Broadkill-Mispillion-Acquango Association and the Unicorn-Carmichael Association (USDA/NRCS – D. Shields, personal communication).

Soils

Broadkill-Mispillion-Acquango Association consists of mineral and organic soils that are regularly subject to tidal flooding by salt water, and narrow areas of loose, salty beach and dune sands. This association occupies about 80 percent of the refuge and about 5 percent of the total land area in Sussex County. The Broadkill, Mispillion, and similar soils occur on open grassy tidal marsh areas dissected by tidal creeks and streams and crisscrossed in places by mosquito-control ditches. In many places there is a brush border adjacent to higher ground. The soils consist of mostly peat or mucky remains of vegetation, some loamy soil material, and large amounts of sulfate. The marshes range from strongly saline to almost fresh along the upper reaches of streams.

A smaller portion of this association includes the Acquango soils and associated beach areas. It occupies a narrow band separating the tidal marsh areas from open water. This part of the association consists of shifting, loose, salty sand that is moved by waves and wind. The part regularly washed by waves and tides is smooth and slopes gently up from the water. That part above normal high tide consists of dunes and hummocks constantly changed by the wind. The vegetation is a sparse cover of beach grass, a few forbs, and scattered low shrubs. The beaches and dunes are used intensively for summer recreation activity and as sites for beach houses. The marshes are on the Atlantic Flyway of migratory waterfowl. Recreational activities in these marshes include waterfowl hunting, crabbing and fishing. Less extensive in this association are Purnell, Sunken, and Saltpond soils (USDA/NRCS – D. Shields, personal communication).

Unicorn-Carmichael Association consists of well-drained and poorly drained soils that have a moderately permeable subsoil of loam to sandy loams. This association accounts for about 15 percent of the total refuge area and occupies about 10 percent of the total land area in Sussex County. This association consists of approximately 55 percent Unicorn soils, 25 percent Carmichael soils, and 20 percent less-extensive soils.


Unicorn soils have a surface layer of grayish-brown loam and subsoil of strong-brown sandy loam or loam. In most areas they are nearly level to gently sloping and are moderately permeable and well-drained. Carmichael soils have a surface layer of gray to dark grayish-brown loam and a subsoil of gray loam or sandy loam. They are nearly level, moderately permeable, and poorly drained. The water table is at or near the surface for long periods during the year. Less extensive in this association are Greenwich, Pineyneck, and Longmarsh soils. Longmarsh soils are on flood plains. Well-drained Greenwich soils and moderately well-drained Pineyneck soils are intermingled with areas of the major soils and do not appreciably affect overall land use. They differ primarily in drainage class (USDA/NRCS – D. Shields, personal communication).

Coastal plain soils vary widely in the proportions of sands, silts, and clays in their location relative to the water table. Soils with high amounts of clays and silts have a tendency to be wetter because water percolates poorly. The mineral organic materials of tidal and freshwater marshes comprise three associations of very poorly drained soils rimming Delaware's coastline from Wilmington down to Fenwick's Island, surrounding the inland bays and the confluence of the Broadkill River (Matthew and Ireland 1974).

Soil associations are further delineated into more specific soil map units (map 3-5). Unit I and Unit II are dominated by Transquaking and Mispillion soils (TP) which, along with a smaller proportion of Sunken mucky silt loam (SuA), constitute most of the wetland habitats. Other soil types found in upland areas of Unit I include Hammonton sandy loam (HnA) and loam sand (HmA), Carmichael

Physical Environment Map 3-5

Map 3-5. Refuge Soil Types

loam (CaA), Hurlock sandy loam (HvA) and loamy sand (HuA), Ingleside loamy sand (IeA and IeB), Marshyhope sandy loam (MdA), Pineyneck loam (PyA), and Unicorn loam (UlA). Within Unit II, Negro Island consists of Hurlock loamy sand (HuA), Second Hill soils are Glassboro sandy loam (GoA), First Hill consists of Ingleside sandy loam (IgA) and Glassboro sandy loam (GoA), and Oak Island is made up of (SaB) Sassafras sandy loam with 2 to 5 percent slopes. The remaining 600 acres of upland forest, croplands and grasslands in Unit II consist of Pineyneck loam (PyA), Unicorn loam (UlA), Carmichael loam (CaA), and Glassboro sandy loam (GoA).

The predominant soil types in Unit III are Transquaking and Mispillion soils (TP) and Broadkill mucky peat (Br), characterized by having large quantities of organic matter on 2,500 acres of impounded wetlands (map 3-5). Soft sediments reach to about 30 feet below the marsh surface. Adjacent upland soils are non-plastic to slightly plastic sandy soil derived from fluvial deposits of the Pleistocene (Matthews and Ireland 1974). The other major soil types found in the Unit III Prime Hook Creek drainage basin include Rosedale loamy sand, Lenape mucky peat, Pineyneck loam (PyA), Carmichael loam (CaA), Hurlock loamy sand (HuA), and Henlopen-Rosedale complex.

Minor soil types found in Unit III include Askecksy loamy sand, Broadkiln-Appoquinimink complex, Downer loamy sand, Evesboro loamy sand, and Klej loamy sand.

Dominant soils found in Unit IV are Broadkill-Appoquinimink complex (Ba), Broadkill mucky peat (Br), Transquaking and Mispillion (TP), and Purnell mucky peat (Pu) (map 3-5). The largest variation in tidal marsh soil profiles is the depth to underlying material, which in most places is sandy. The depth ranges from 2 to 3 feet in some hummocks and near the boundaries with upland soils, to an undetermined depth in the interior of broad marsh areas. In these areas where tidal fluctuations are great, the horizons are completely liquid. Other minor soil types found in upland habitats in Unit IV include Askecksy loamy sand (AsA), Fallsington sandy loam (FaA), Hammonton loamy sand (HmA) and sandy loam (HnA), Hurlock sandy loam (HvA), and Rosedale loamy sand (RoB).

Unit IV topography is relatively flat with less than one percent slope. An ancient beach ridge capped by low dunes and consisting of deep coarse sandy soils occurs in the both the Nanticoke and Broadkill River watersheds of Sussex County, which runs through the southern portion of the county (Hess et al. 2000). These soil types and sand ridge features support the ancient sand ridge maritime forest community found in Unit IV. Most of Unit IV lies below the 3-foot contour.

The mission of the Service's air quality program is to protect and enhance air quality in support of ecosystem management in the National Wildlife Refuge System. The Service's vision "is a Refuge System free of impacts from human-caused air pollution and is consistent with the Refuge System Improvement Act, which requires that 'the biological integrity, diversity, and environmental health of the [Refuge] System are maintained..." (http://www.fws.gov/refuges/AirQuality/index.html; accessed January 2012).

Prime Hook NWR's greatest contribution from human-caused air pollution would occur from prescribed fire activities as a short-term intermittent source of fine particulate concentrations. Prescribed fire is an important tool to decrease dead fuel load accumulations of wildland vegetation for public safety and to improve the health of natural ecosystems. Full consideration of air quality values has been made in Prime Hook NWR's fire management plan for all prescribed fire planning and operations (see Smoke Management Section 4.2.1.5 of Prime Hook NWR's wildland fire management plan (March 2009)).

Air Quality

The Air Quality section of DNREC's Division of Air Quality and Waste Management monitors levels of ozone and particle pollution from nine locations throughout the State. The Lewes monitoring station is the closest to the refuge. These sites have been monitoring air quality since the late 1960s. Air monitoring stations are used to house continuous monitoring instruments that measure criteria air pollutants.

A criteria air pollutant has a national ambient air quality standard (NAAQS) established for it by the EPA. There are currently seven criteria pollutants: sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, lead, particulate matter less than 10 microns in diameter (PM10) and particulate matter less than 2.5 microns (PM 2.5).

Local air quality is affected by regional issues. In general, air quality in Sussex County is good during the winter and spring, but only fair in summer and fall. From Memorial Day to Labor Day, Sussex County is often in non-attainment state for NAAQS, meaning pollution limits set by the EPA have been exceeded for several consecutive years. Limiting smoke impacts resulting from prescribed fire is important to protect public health and safety. For this reason, prescribed refuge burns usually occur in late winter or early spring.

DNREC's Division of Water Resources manages and protects the State's water quality through seven sections. The Water Assessment Section protects water from nonpoint source pollution and plans monitoring and management actions to improve water quality on a watershed scale to protect human health and the State's environment. There are 45 delineated watersheds in Delaware and Prime Hook NWR is influenced by three: Mispillion River, Cedar Creek, and Broadkill River watersheds. The most recent water quality assessments performed by this Section (State of Delaware 2008 Combined Watershed Assessment Report [305(b) and Determination for the Clean Water Act Section 303 (d) List of waters needing TMDLs) indicates that a majority of the State's water resources are suffering from poor water quality.

Water quality monitoring has shown that more than 92 percent of Delaware's waterways are considered impaired. Impaired waters are defined as polluted waters based on EPA water quality standards. Of 2,506 miles of rivers and streams tested for water quality attainment, 2,497 miles have been documented as impaired. Of the 2,954 acres of lakes, ponds and reservoirs, 2,798 acres were found to be impaired (State of Delaware 2008 303(d) Impaired Waters List pp 89-125).

Pathogenic indicators (bacteria) are the most widespread pollutants in the State. The pathogen indicator monitored by DNREC for primary contact recreation is *Enterococcus* bacteria. Other pathogen indicators (total and fecal coliform bacteria) are monitored to regulate shellfish harvesting areas.

Although pathogenic indicators are the most widespread in Delaware, nutrients and toxics pose the most serious threats to water quality. All of the State's estuarine waters are considered nutrient-enriched. Water quality and negative impacts to aquatic organisms from nutrient enrichment include eutrophication and low dissolved oxygen levels. Large portions of nutrients are transported to estuaries and ponds via rivers and ground water.

The presence of toxic substance concentrations above EPA standards for human health triggers the publication of fish advisories by the State. In 2007, the State fish consumption advisories included, for the first time, waterways within Prime Hook NWR or immediately adjacent to the refuge. These included Prime Hook Creek, Slaughter Creek, and Waples Pond (see table 3-1 below).

Water Quality

Table 3-1. State of Delaware Fish Consumption Advisories

State of Delaware Fish Consumption Advisories					
Waterbody	Species	Geographic Extent	Contaminants		
Mouth of Delaware Bay	Striped Bass White Perch American Eel White Catfish	South of C and D Canal entire Delaware Bay to Mouth of Atlantic Ocean	PCBs, Mercury		
Waples Pond	All Finfish	Entire Pond	Mercury		
Prime Hook Creek	All Finfish	Entire Creek	Mercury		
Slaughter Creek	All Finfish	Entire Creek	PCBs, Dioxin, Furans		

Multiple sources are cited for poor water quality of Delaware's waterways. These include nonpoint sources of agricultural runoff, septic system failures, animal feed lot operations, urban runoff, and municipal and industrial point sources as the primary origins of nutrients and toxic substances.

The Delmarva Peninsula is one of the largest poultry production areas in the United States, generating more than 600 million chickens and 1.6 billion pounds of manure annually. The State of Delaware ranks 7th in the nation in the number of broilers produced. Statewide, this industry is represented by about 900 chicken farms with the largest portion found in Sussex County. There are four chicken farms immediately adjacent to Prime Hook NWR that produce 500,000 to 1 million birds per year. Within a 6-mile radius of the refuge, about 19 poultry farms are located that produce 3 to 5 million birds annually (DDA 2007).

Water quality problems associated with the animal feeding operations were investigated on Prime Hook NWR by contaminant biologists in the Chesapeake Bay Field Office concerned that excessive land application of poultry litter has resulted in severe water quality problems in surface and groundwater on the Delmarva Peninsula (McGee et al. 2003). The study provided direct evidence for transport of tetracycline compounds found in waterbodies from poultry litter applied on the fields in the Delmarva peninsula. It should be noted the data are very limited, both in terms of the number of samples and the geographic coverage.

Cladophora Algal Bloom Event During Winter, Spring, and Summer of 2010 Large mats of native Cladophora algae began to develop in early February in the Unit II impoundment. By April, the bloom expanded to encompass 700 acres immediately adjacent to Prime Hook Road. Since the algal mats emerged in late winter, robust thick mat growth developed by early spring, effectively allowing the Cladophora to out-compete other marsh plants during the growing season.

The bloom remained confined to the southern portion of Unit II until early May when it spread into the northern part of the Unit III impoundment adjacent to Prime Hook Road. The spread was probably facilitated by the hydrological connection between Units II and III via several road culverts. By mid-July, the algal mats began to decrease in size and disappear. This was the first time that such an algal bloom event occurred on the refuge, and was probably triggered by a combination of changing environmental conditions in Unit II and climatic influences.

The breaching of Unit II dune line in 2009 changed the salinity conditions of the impoundment where ranges of 20 to 25 ppt became the norm throughout the entire 1,500-acre impoundment. Then heavy snowfall in January and

early February triggered extensive runoff from upland areas into the refuge. Marine Cladophora species have an optimal temperature range that maximizes development (50 to 77 0 F). Snow melt and extensive runoff spiked phosphorus loading into the system and perfect growth conditions triggered the bloom. When temperatures exceeded 80 0 F by August, algal mats began to disappear.

As a result of the algal bloom, refuge staff was concerned about excessive nutrient loads within Unit II. Water samples were taken at three locations on May 19, 2010. The samples were analyzed by the University of Maryland, Center of Environmental Science, Chesapeake Biological Laboratory in Solomons, Maryland. Two of the samples were located on the refuge and one on upper Slaughter Creek, which flows into the refuge.

Delaware has no numeric water quality standards for total nitrogen or different forms of phosphorus. For ammonia (NH4), the numeric values are pH and temperature-dependent. The results for the three water bodies (pH 8; $25\,^{\circ}$ C) are found in table 3-2.

Sample Id	CBL	N02	NH4	P04	N023	TDP	TDN
	NUMBER	(mg N/I)	(mg N/I)	(mg P/I)	(mg N/I)	(mg P/I)	(mg N/I)
UNIT II	1	0.0009	0.016	0.0027	1.094	0.0336	2.36
SLAUGHTER CREEK	2	0.0495	0.746	0.0530	4.940	0.1213	6.70
UPPER SLAUGHTER CREEK	3	0.0594	0.091	0.0476	5.640	0.1423	6.81

Total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), nitrite plus nitrate (NO23), phosphate (PO4), and nitrite (NO2) are all nearly equal in the creek, but Slaughter Creek is nearly ten times higher in ammonia content. The bloom in Unit II does not correspond with high nutrient concentrations, as the concentrations for all nutrients in Unit II are the lowest of the three areas.

Geochemical changes associated with the intrusion of salt water back into these wetland areas are potentially evident in these water quality findings. Sediment subsidence is of particular concern in diked flooded marshes following tidal restoration, which could lead to prolonged flooding and sulfide toxicity (Portnoy et al. 1997). Plant death and peat collapse have been noted after salt water intrusion in Louisiana brackish marshes. Ferrous iron toxicity, which may also inhibit *Spartina* growth, is also a concern. As for sulfide, however, FE (II) and Al phytotoxicity could be offset by abundant nutrients, especially NH4. The potential large mass of nutrients mobilized by increased decomposition, cation exchange, and phosphate mineral dissolution during saltwater intrusion could depress dissolved oxygen in surface waters by promoting algal production and organic loading (Portnoy et al. 1997).

Portnoy's research emphasizes that salt water intrusion can substantially affect estuarine plants and animals. These changes include sulfide accumulation, metal increases, and nutrient mobilization as well as subsidence.

Concerns were also raised regarding the algal mats containing *Enterococcus* and *E. Coli* bacteria. These bacteria are naturally occurring in the environment. The refuge contracted with DNREC's Division of Water Resources to analyze water samples from July through August. The results concluded that neither bacteria exceeded State or EPA standards.

Ground-Water Contamination from Lead Shot

For 37 years, the Broadkiln Sportman's Club, which is adjacent to Prime Hook NWR on the southwestern corner of the headwaters of the Prime Hook Creek, operated a trap-shooting range. Clay target launchers were oriented so that expended lead shot dropped into a forested wetland and upland grassland areas on Prime Hook NWR. After many years of lead shot deposition, it was discovered that lead shot concentrations were as high as 57,868 pellets per square foot in many areas on the refuge lands adjacent to the Club.

The club was founded in 1962 in Pikes Neck, Sussex County. The club used five trap houses, each with five shooting stations. Shotgun rounds were projected across a grassy field toward a wooded wetland intending to hit airborne clay targets above the field. Numerous lead shot pellets from misses and overshot trajectories often hit trees inside the refuge boundary, fell to the ground, and accumulated through the years.

The portion of Prime Hook NWR bordering the club, which is down range from the trap-shooting area, consists of a forested wetland along a small tributary or slough draining into Prime Hook Creek. The slough varies in size and shape with the seasonal rise and fall of the water table, and dries up completely on occasion. This slough is heavily forested and used by migratory birds, small mammals, and amphibians.

The trap-shooting range was operated from 1962 to 1998 until a proposed land swap with the Service was initiated by the club. Upon this request, the Service initiated a level one contaminant survey of refuge lands. In August and October of 1998, Service personnel collected soil samples to determine the extent of lead shot deposition and lead soil concentrations. Results showed significant lead contamination. The Service ordered the club to discontinue depositing lead shot onto refuge lands, and in 2000 initiated a three-year refuge cleanup project.

A preliminary assessment in 2000 determined that an affected area of 22 acres down range of the club had accumulated most of the lead shotgun pellets with the highest densities concentrated in a zone approximately 26,200 square feet referred to as the drop zone (Crowley and Richardson 2001), as part of an environmental risk assessment prepared by Service contaminants biologists and the U.S. Geological Survey investigated the potential for lead soaked soils to leach into the groundwater.

Results from 2 sampling rounds of 19 wells (May 2000 and April 2001) showed that elevated levels of dissolved lead were present in the groundwater on Prime Hook NWR. The U.S. Geological Survey study was designed as a field screening to give the Service some indication of the scope of the groundwater lead problem. Lead transport through shallow ground is an unusual occurrence, as metallic lead is generally considered immobile. The U.S. Geological Survey further investigated the chemistry of the process of lead mobilizing from the surface down to the groundwater.

Study results verified that low pH values were recorded in the groundwater ranging from 4.8 to 6.4. These acidic environmental conditions were responsible for dissolving the lead carbonate from the pellets. Because of the lack of buffering capacity and adsorption sites in the silica-rich sediments of the area, the dissolved lead was mobilized and moved into the groundwater on the refuge.

A biomonitoring study was initiated in the spring of 2002, prior to removal of the contaminated uplands that occurred in 2003. The study was repeated the following two years to document changes in the levels and bioavailablity of lead in the downgradient wetland sediments. Southern leopard frog (Rana

sphenocephala) tadpoles at Gosner stage 24 were collected from an unimpacted pond on the NWR and placed in enclosures in wetlands at a reference site and at two wetland sites within the shooting trajectory with different concentrations of lead. The amphibians were removed when those at the reference site completed metamorphosis. The gut was removed, and the body analyzed for lead and the liver analyzed for amino levulinic acid dehydratase (ALAD) activity. We found statistically significant differences in ALAD in 2002 among the three sites, indicating inhibition at both the hot and warm locations (less than 0.015 nmol porphobilinogen/per gram liver per hour) relative to the reference (0.20 nmol). In 2004, both sites had significantly lower activity than the reference. The warm site improved in 2005 (0.18nmol) but was still significantly lower than the reference (0.25 nmol). The hot location average also improved to an average of 0.086 nmol, about five times the initial average. Lead concentrations were significantly different at sites (p less than 0.001) in each of the three years. In 2002, the average whole body lead concentration was 59.9 ppm at the hot location, 1.34 ppm at the warm location, and 0.176 ppm at the reference location. At the hot site, there was a steady decrease in whole body lead concentrations from 2002 to 2004 and 2005, but average concentrations were still 350 times that for the reference. Warm site average concentrations decreased and then increased back to the 2002 concentration, which was about 17 times the reference. The study is planned to be repeated in 2011 to note any changes.

The Service has physically excavated and removed part of the pellet-contaminated soils on Prime Hook NWR, which has since re-vegetated with native plants. The major source of groundwater contamination has been remediated on Prime Hook NWR. The attenuation of high lead concentrations in the ground water will require long-term monitoring to confirm the potential of natural attenuation of the system (Soeder and Miller 2003). Water quality monitoring by the Service's Chesapeake Bay Field Office is still ongoing. The refuge has not acquired any of the lands owned by the shooting club, so it does not control all of the impacted or unremediated lands affected by the lead shot deposition. Today, the gun club is no longer operating as such, and the private lands remain unremediated.

History of Vegetation on and Around the Refuge

Prehistoric Climatic Influences on Delmarva Landscape Vegetation Prehistoric climatic influences that shaped the landscape of the Delmarva Peninsula and refuge lands revolved around the rise and fall of sea levels. All of the Delmarva Peninsula south of Elkton, Maryland and Newark, Delaware is essentially a large sandbar built from sediment left by the sea or eroded off the ancient Appalachian continent over the past 150 to 200 million years. The peninsula is located in the Atlantic Coastal Plain, itself a relatively recent emergence of the continental shelf (Scott 1991).

For tens of millions of years, the sea continued to rise and fall and the rivers washed sediments off the land creating today's features of the Delmarva Peninsula. The last Ice Age on Delmarva occurred about 25,000 years ago with the Wisconsin Glacier. Each time the climate warmed, the amount of water released by this melting ice floe caused sea levels to rise high enough to flood the entire peninsula. During these melting phases the water rose 30 to 40 feet above its present levels, depositing a thick layer of maritime sediment sandy soil on southern Delmarva.

During freezing periods, so much of the earth's available water was incorporated into ice that the sea dropped hundreds of feet below current sea level. The

receding of the sea from the peninsula often left behind the poorly drained depressions that are now known as Delmarva bays (Scott 1991). A well-known Delmarva Bay adjacent to the refuge (Huckleberry Swamp) and several similar depressional swamp areas on the refuge (total of six depressional wetlands) have been recently mapped by Delaware Heritage Program botanists in 2005 and 2006 (McAvoy et al. 2007).

These depressional wetland types are an important natural resource in Delaware and are considered a top priority for protection by DNREC. They are today becoming rare because they are not regulated and are easily destroyed by ditching, draining and filling. Important groundwater recharge areas also provide habitat to State rare plant species and are extremely valuable to amphibians that utilize refuge depressional wetlands for breeding purposes (McAvoy et al. 2007).

Delaware Bay and adjacent land surfaces have undergone substantial environmental and vegetative changes. During the Late Pleistocene geological epoch, approximately 15,000 years before present (BP), continental ice sheets of the Late Wisconsin Glacier advanced south to New York and northern Pennsylvania. The glacier stopped just north of Trenton, New Jersey. It was a veritable mountain of ice, several thousand feet thick. Ice sheets, which covered the entire globe, incorporated so much of the earth's available water that the sea dropped more than 300 feet and caused the continental shelf to emerge from the sea east of the Delmarva Peninsula. Pollen samples dating 11,500 BP, when the Wisconsin Glacier was at its height, show that extensive grasslands covered its exposed face and were interspersed with patches of pine, spruce, fir, and hemlock tree species representative of a boreal forest stand (Scott 1991).

During the 1970s, John Kraft and his students from the University of Delaware conducted stratigraphic coring on and near the refuge. These studies indicated the magnitude of coastal changes during the Holocene period of human occupation of the southern Delaware coastal environments. Slaughter Beach is underlain by 40 feet of soft mud deposited by estuaries during the early and middle Holocene. From Prime Hook Beach south to Broadkill Beach, modern barrier beaches cover estuarine mud from depths of 10 to 60 feet. At Fowler Beach, Pleistocene sand and gravel of the former Slaughter Neck headland occur at depths of eight feet below present mean sea level (Kraft et al. 1976).

Hoyte (1980) extracted nine stratigraphic cores on the refuge along Slaughter Creek and has suggested that lagoons behind barrier beaches changed from freshwater marshes to brackish marshes over the past five centuries. In upland area, core samples near the creek (Slaughter Neck) contained Delmarva fox squirrel bone fragments, identified by their unique feature of glowing under black light. In March 2004, Tetra Tech Research, Inc. extracted six additional vibracores from streamsides and near-shore wetlands, and excavated four machine trenches on adjacent refuge uplands to examine erosion and sediment accretion related to sea level rise and associated vegetative changes.

Prehistoric and Historic Cultural Setting and Human Land Use History

Land use refers to the way land is developed or conserved. Review of the land use history of the project area provides a context for understanding physical environmental change. Many changes in the patterns of North American land forms, vegetation, and habitats (collectively referred to as landcover change) have resulted from or been heavily influenced by prehistoric and historic land use by humans.

The prehistory of Delaware is usually described by archaeologists in terms of five major chronological periods (Custer 1989) that correspond to broad adaptive

shifts in changing natural and cultural conditions. These cultural periods are the Paleo-Indian (14,000 to 8,500 BP), Archaic (8,500 to 5,000 BP), Woodland I (5,000 to 1,000 BP), Woodland II (1,000 to 500 BP) and Contact Period. Cultural periods have been identified from chronologically diagnostic artifacts such as projectile points, ground and chipped-stone technologies, and pottery styles during the Woodland I and II periods (Custer 1984). The following cultural landscape discussions and land use history also include Prime Hook NWR's archaeological and historical resources.

- (1) Paleo-Indian Period (14,000 to 8,500 BP). Paleo-Indian archeological sites and artifacts are extremely rare in Delaware. One Paleo-Indian artifact was recovered at a site on the refuge. An isolated kirk point was recovered in 1991 by Cherie Clark, Delaware Historic Preservation Officer, during field excavations performed on the refuge by State Mosquito Control personnel. The find was located on a narrow neck of moderately well-drained soil leading out to a salt marsh area, and was archived by State personnel.
- (2) Archaic Period (8,500 to 5,000 BP). Climatic warming led to forest closure after 10,000 BP and heralded a dominance of northern and southern hardwoods over boreal conifers (Davis 1983). The Archaic Period is believed to reflect hunting, fishing, and plant gathering subsistence patterns developed in response to increasing environmental diversity. Exploitation of anadromous fish was first indicated in New England during the Archaic Period and Atlantic fisheries, as known today, began to develop within Delaware Bay habitats.

During Atlantic climatic changes of the Archaic Period, hot and dry climates led to the drying out of many interior ponds and wetlands in Delaware and elsewhere across the mid-Atlantic region (McWeeney and Kellogg 2001). At present, no clearly defined Archaic Period archeological sites or artifacts have been found on Prime Hook NWR. The kirk point might date from the Archaic or Paleo-Indian periods. Another artifact reported from the Morris prehistoric site might date between 6,000 and 2,000 BP. However, most refuge estuarine habitats dating from the Archaic Period have been inundated by rising seas (Tetra Tech FW 2004).

(3) Woodland I Period (5,000 to 1,000 BP). Archeological evidence increases dramatically after 5,000 BP in the mid-Atlantic and New England regions, reflecting expanding human populations. Climates became wetter and cooler during the sub-Boreal period (5,000 to 2,500 BP), recharging interior wetlands and increasing stream flows (Custer 1984). Custer (1984) has defined the development of estuarine adaptations, population growth, exchange networks, and mortuary ceremonialism during the Woodland I Period. At present, no evidence has been established for the presence of the eastern agricultural

Tech FW 2004).

complex involving domesticated crop cultivation

in Delaware or the mid-Atlantic Region. Many woodland archeological sites in

Delaware were repeatedly occupied over thousands of years, implying that residents were focusing on highly productive habitats and resources as a basis for depending solely on annual hunting, gathering, and fishing subsistence grounds (Custer 1984). Four archeological sites on the refuge are

associated with Woodland I occupations. No evidence for Woodland I cemeteries have been reported on Prime Hook NWR (Tetra

Black and white warbler

(4) Woodland II Period (1,000 to 500 BP). The Woodland II Period was a time of major cultural change in the mid-Atlantic. The bow and arrow replaced spear hunting technologies (Blitz-1988). It is speculated that increased hunting efficiency might have led to overkill of local deer populations, requiring the necessity for agricultural surpluses or intensified estuarine exploitation to meet hunting shortfalls. The first evidence for corn agriculture in the Chesapeake Bay appears at 1,070 BP, and corn expanded rapidly north to Long Island Sound by 880 BP (Tetra Tech FW 2004). Tetra Tech Research Inc. (2004) identified pollen evidence for Woodland II corn agriculture within vibracore samples on Prime Hook NWR.

Other prehistoric sites have been found on Prime Hook NWR that presently lack sufficient quantity of diagnostic artifacts to be definitively placed in a chronological period (MAAR 1981). Insufficient archeological data due to lack of systematic excavations conducted in these areas is the reason sites have not been eligible for National Register of Historical Places designation (MAAR 1981).

(5) Contact Era (500 to 300 BP). European contacts with Native peoples near Prime Hook NWR area began during the 16th century; subsequent disease outbreaks were catastrophic to Native Americans. At the time of European contact, Delaware Bay was occupied by numerous small, independent Algonquian-speaking Lenni Lenape bands. Most of northern Delaware's human residents were Lenni Lenape (labeled "The Delawares" by the English) who occupied the west bank of the Delaware River down to the Leipsic River and south to the St. Jones River. These people were politically and linguistically different from the larger bands of the Nanticoke (People of the Tides), who occupied the river drainages in Sussex County along the Broadkill and Indian Rivers.

Estimates of the total number of Native Americans in Delaware in 1600 A.D. ranged from 0.2 to 1.3 people per square mile. This population estimate is comparable to 1.1 people per square mile in Alaska in 2000, but far below Delaware's 401 people per square mile in the same year (Williams 2008).

Contact Period sites are indicated on historic maps, documents, and through artifacts of European trade goods found in archeological digs. For example, south of Prime Hook NWR, historic Nanticoke villages were identified with mixed European artifacts along the Indian River into the 19th century. A mixed community of Lenni Lenape, Nanticoke, and African Americans developed during the 17th century in Kent County, (Heite 2000), but no Contact Period archaeological sites have been identified at Prime Hook NWR. Extensive Woodland II occupations and Paleo-Indian use along the Slaughter Creek were abandoned by the arrival of the first European land grants and land surveys of the 1680s. No documentary references have been identified for Indian villages on the refuge (Tetra Tech FW 2004).

(6) Post-Contact Period. The first European settlement along the Delaware River occurred in 1623, when Dutch Captain Cornelis Mey established a trading fort at Fort Nassau, now Gloucester, N.J. In 1629, Holland issued a land grant for Cape Henlopen, Delaware, to Dutch settlers. In 1631, Captain Peter Heyes with 28 men established a trading fort at Zwaanaendael, which is now Lewes, Delaware. This garrison was wiped out in 1632 by local Native Americans. In 1638, Swedes established Fort Christiana in New Castle County. By 1654, New Sweden had established a settlement near the head of Delaware Bay with 368 settlers. In 1658, the Dutch reestablished another trading post at Hoornkill, which was later named the Broadkill River near Milton, Delaware (Tetra Tech FW 2004).

Following the attempts by the Swedes and Dutch to settle the area, two English ships, commanded by Sir Robert Carr took possession of the Dutch settlements along Delaware Bay. Around 1680, the English under William Penn made permanent the settlement at Lewes and surrounding area along the Broadkill River. By 1680, Sussex County was formed and a courthouse was authorized at the cost of 5,000 pounds of tobacco. In 1681, the province of Pennsylvania was granted to William Penn and the three Delaware counties all passed into Penn's administrative realm (Tetra Tech FW 2004).

Through intensive documentary research, chains of title can be identified for early colonial landholdings that now make up the refuge. For example, John Fisher traveled with William Penn when the English made permanent settlements in Lewes and environs. In 1685, Fisher bought several properties of thousands of acres which are now portions of Prime Hook NWR's Unit III and IV upland and wetland areas, referred to as the Island Farm (Tetra Tech FW 2004).

The earliest colonial settlement of current refuge lands goes back to a number of land grants and patents dating back to the latter part of the 17th century found in Scharf's History of Delaware: "A tract of land one thousand by four hundred and eighty perches, containing three thousand acres, and lying between Prime Hook and Slaughter Creeks, was patented on June 21, 1671 by Governor Lovelace to Richard Perrott, of Virginia" (Scharf 1888:1247/MARR 1981).

Other colonial owners of refuge lands included Halmanus Wiltbank (Unit IV Wiltbank Landing) and William Dyer, who owned sections of the Unit III tracts known as Walker's Neck. Tilney Clarke Conwell compiled a detailed documentary history of 1,100 acres in and around the current headquarters area called Dyer's Delight from the 17th century until the refuge was established in 1963. Early colonial sites on Prime Hook NWR for this era are typical 17th century property locations near navigable waters (Tetra Tech FW 2004).

Understanding what the historic natural vegetation types were in refuge areas, how they were distributed, and what ecological processes influenced them prior to major human-induced influences provides a reference point to manage for biological diversity, integrity, and environmental health. These can pinpoint a baseline framework to evaluate future restoration and management options. However, we have noted that, when considering the restoration of areas to native vegetation, ecologists caution against selecting one point in time and instead recommend managing for a historical range of variation for each habitat type (Egan and Howell 2001).

Historic range of variability is a method used in restoration ecology to describe how natural ecosystems have a range of historic conditions in which they are self-sustaining and beyond which they move to a state of unsustainability due to degraded biological integrity, low biodiversity, or impoverished environmental health (Egan and Howell 2001).

Agriculture was the primary cause of deforestation and draining of wetlands. Soil fertility over much of the Delmarva Peninsula continued to decline as the soils had no time to recover from tobacco cultivation followed by the intensive plantings of wheat and corn. Many of Delmarva's rivers became clogged with silt as deforestation and agriculture facilitated erosion of uplands, so once prosperous shipping and coastal towns became economically stranded.

Negative impacts to wildlife continued as natural habitats were destroyed. With the elimination of natural predators, squirrel populations increased. Bounties were established for squirrels, which were damaging crops. Deer numbers were drastically reduced due to overharvesting. Wild turkeys, estimated at more than 10,000 birds in Delaware before the advent of European settlement (Williams 2008), were hunted nearly to extinction by the early 19th century, along with Delmarva fox squirrels.

Sussex County underwent substantial development during the 20th century. The advent of the automobile funneled large numbers of tourists and vacationers to coastal areas. Most 19th century structures continued to be occupied into the 20th century. The Service has identified several sites constructed during the 20th century, including sport-hunting camps and other historic sites on the refuge (Tetra Tech 2004).

Increased beach resort development and beach home construction continued in the latter part of the 20th century and into the 21st, shrinking the size of undeveloped sandy beach ecosystems remaining in the State. Undeveloped bay and ocean shorelines represent a disappearing natural habitat type in Delaware.

History of Agricultural Management on and around the Refuge

In pre-settlement North America, waterfowl were dependent on aquatic, marsh, and shoreline vegetation and the mast and seeds of terrestrial plants of seasonally flooded bottomland forests for food. The conversion of North American forests and wetlands to agricultural lands, and the degradation and loss of wetland habitats to development, drainage, and pollution, gradually changed North American waterfowl feeding habits. As wetlands diminished and farmlands increased, many waterfowl adapted to foraging in croplands, i.e., in crop stubble, on waste grain, and on the weedy herbs that colonize fields between crop rotations.

Game agencies use farming to attract and provide forage for waterfowl on wildlife management areas. On the Delmarva Peninsula, crop or food plot management has been conducted largely to attract Canada geese, and to a lesser extent, dabbling ducks. Cropland management has also been a traditional habitat management tool on national wildlife refuges nationwide. Refuges have used farming to attract and feed waterfowl species to support migrating goose and duck populations, as well as to provide hunting and viewing opportunities for the public. Prime Hook NWR began a cooperative farming program when the refuge was created in the 1960s. At that time, the refuge also managed the farming program to support duck production, with croplands in grass/clover stages of rotations designed to provide nesting habitats for ducks. At its peak in the 1970s, 1,070 acres were in agricultural production on the refuge. In 2006, the last year of the cooperative farming program, the refuge farmed 485 acres.

Historically, waterfowl were the most closely monitored and managed bird populations on national wildlife refuges. Much of the Refuge System's land acquisition and management capability was funded by an interest in game birds. Emerging status and trends data on many migratory bird groups, such as songbirds, colonial waterbirds, shorebirds, and raptors, as well as other wildlife, including mammals, fish, herpetiles, insects and plants, has expanded the conservation mission of the National Wildlife Refuge System beyond waterfowl alone. The current purposes and mission of Prime Hook NWR include conserving all processes and organisms comprising healthy ecological communities of coastal Delaware.

At its peak, the cooperative farm program at Prime Hook NWR managed 48 small fields averaging 22.3 acres each, for a total of 1,070 acres, or 0.073

percent of the total cropland (2007 acres) on the Delmarva peninsula. As part of a cooperative agreement on Prime Hook NWR, farmers historically planted several hundred acres of non-native cover crops (barley, clover, or wheat) as green browse for geese after the harvest of the corn or soybean crop. In 2007, Sussex County alone managed nearly 35,000 acres of green browse; there was a total of 306,120 acres of green browse on Delmarva.

Prior to establishing a cropland management program, Refuge Policy 6 RM 4 states the refuge must develop a cropland management plan. The plan must describe how refuge wildlife population objectives will be achieved through the production of grain. Prime Hook NWR's cropland management plan was approved in 1970. Since its development, the refuge cropland management expanded to include additional lands acquired in the 1970s to the present. Farming techniques, pesticides, best management practices, etc., have changed tremendously since the original cropland management plan. Prime Hook NWR's cropland management plan has been outdated and obsolete for many years; it did not include the use of more advanced agricultural techniques and best management practices, such as integrated pest management.

In addition to Refuge Policy 6 RM 4, two acts of Congress also play a role in the cropland management program: the National Environmental Policy Act of 1969 (NEPA) and National Refuge System Improvement Act (1997). NEPA requires the government to evaluate the impacts of its management actions to the affected environment. The Improvement Act requires the refuge to ensure

that cooperative farming is compatible with the purpose for which the refuge was established. Cooperative farming is also considered an economic use and Refuge Policy 5 RM 17 plays a role in the formation of cropland management planning.

In 2006, the Delaware Audubon Society, Center for Food Safety, and Public Employees for Environmental Responsibility filed suit against the Service for the refuge's failure to comply with these acts and policies. In 2009, the judge enjoined the refuge from farming and planting genetically modified organisms until the refuge completed compatibility determinations and environmental assessments dealing with the impacts. The refuge ceased all farming operations in 2006, and this CCP serves as the required NEPA analysis of farming as a management option.

History of Refuge Wetlands and Wetland Management

The wetlands on and around the refuge have been shaped by many natural and human-caused factors over the last century. Table 3-3 provides a summary of wetland history.

American bittern

Kevin Fl

salt marsh cordgrass (Spartina alterniflora); Zone II dominated by salt hay (Spartina patens) and spike grass (Distichlis spicata); Zone III dominated by salt bush species (Iva frutescens and/or Baccharis halimifolia) mixed with salt hay or spike grass; Zone IV dominated by giant reed grass (Phragmites australis); Zone V is a transitional wetland type with no dominant species. Table 3-3. Summary of Historic Wetland Survey Findings in the Prime Hook NWR Area. 1976 DE Wetland Atlas Designations: Zone I dominated by

		•		•		
	Early 1900s	1951 Survey of Delaware Wetlands Findings	ware Wetla	nds Findings	Wetland Survey Work C of Delaware and	Wetland Survey Work Conducted by the University of Delaware and DNREC in the 1970s
Refuge Unit(s)	Compiled from early narratives and accounts	Dominant Vegetation Species	Salinity Range	Additional Comments	1973 Vegetation Map Dominant Species	1976 DE Wetland Atlas Zone(s)*
Unit I	Slaughter Canal was dug by landowners to improve drainage on nearby uplands, thus altering and limiting tidal flow in the salt marsh.	big cordgrass, salt marsh cordgrass, salt hay, cattail, <i>Phragmites</i> , three- square, panic grass, marsh mallow, high tide bush, groundsel bush;	1.7 – 38.8	In spite of the large acreage encompassed by this marsh survev unit. use of the area by	Spartina patens Spartina alterniflora Phragmites australis Iva frutescens Spartina cynosuroides Typha spp. Panicum viigatum	Zone I Zone II Zone III Unit I shoreline categorized as Zone IV
Unit II	Slaughter Creek flowed through this marsh directly into the Delaware Bay until the outlet was closed by a storm. Much of the marsh was grid-ditched for mosquito control.	In the brackish portions: duckweeds, pondweeds, bur-reed, cattail, water willow, wild rice, pond lilies, rushes, smartweeds	1dd	waterfowl was low compared to other parts of the State.	Phragmites australis Spartina altemiflora Spartina patens Iva frutescens Spartina cynosuroides Hibiscus palustris	Zone I Zone II Unit II shoreline categorized as Zone IV
Unit III	Prime Hook Creek flowed through this marsh and through the barrier beach directly into the Delaware Bay. It brought tidal water into this salt marsh daily, until the outlet was closed by a storm.	In the saline portions: Phragmites, big cordgrass, salt marsh cordgrass, cattail, salt hay, groundsel bush, marsh mallow; In the fresher portions: cattail dominates; also, bur-reed, pondweeds, smartweeds, chufa, wild millet, three-square, sweet pepper bush, rushes, common ragweed	0.1 – 18.6 ppt	A high barrier along the coast is cited as the reason there as less true salt marsh vegetation in this unit than in areas north and south. Occasional influx of saltwater through breaks in the dune are also noted. Expansion of <i>Phragmites</i> is noted. Survey unit contains areas recommended for future water level management.	Phragmites australis Spartina alterniflora Iva frutescens Spartina patens Mixed Species Typha spp. Hibiscus palustris	Zone IV Zone V Southern portion of Unit III categorized as Zone II
Unit IV	Much of this marsh was grid-ditched in the 1930s for mosquito control.	In the coastal portion: salt hay, big cordgrass, salt marsh cordgrass, high tide bush, groundsel bush, marsh mallow, panic grasses In the small fresher areas: cattails, smartweeds, swamp dock, water willow, pondweeds, Phragmites	1.4-29.0 ppt	Low muskrat production was attributed to presence of mosquito control ditches that were cleaned each year.	Spartina patens Spartina alterniflora Iva frutescens Phragmites australis Typha spp. Hibiscus palustris Spartina cynosuroides	Zone I Zone II

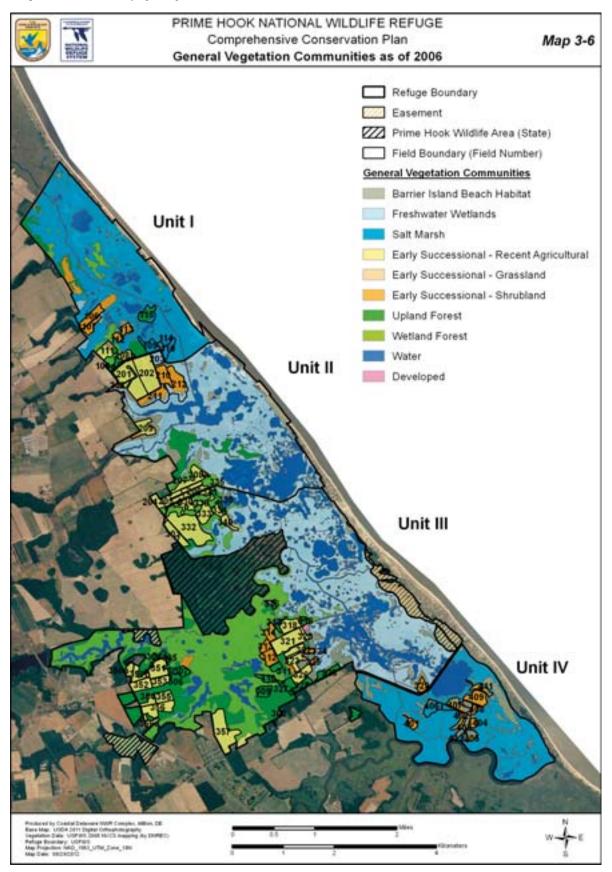
Refuge Vegetation Resources

Mapping Refuge Vegetation

Mapping of vegetation communities was conducted from 2005 to 2007 by the Delaware Natural Heritage Program (DNHP) and NatureServe on the refuge, excluding about 827 acres of easements. Mapping was conducted according to the National Vegetation Classification Standard (NVCS), which is the Federal standard. This system classifies vegetation on a national scale for the United States and is linked to the international vegetation classification. The NVCS provides a uniform name and description of vegetation communities found throughout the country and helps determine relative rarity. The NVCS classification standard is organized into a natural vegetation hierarchy that consists of eight levels based on floristic and physiognomic criteria that include:

- (1) Formation class
- (2) Formation subclass
- (3) Formation
- (4) Division
- (5) Macrogroup
- (6) Group
- (7) Alliance
- (8) Association

The NatureServe group generated a report summarizing a subset of the international classification standard covers of vegetation associations attributed to Prime Hook NWR in 2006. Their report includes vegetation community element descriptions, element distributions along the mid-Atlantic and Northeast, and global rarity rankings of refuge communities (McAvoy et al. 2007). Vegetation communities were described using 2002 aerial photography and field studies.


It should be noted that, as a result of the recent shoreline changes in Unit II (overwashes, inlets), these vegetation communities may be changing in composition and in size. With many of these areas in transition, the exact nature and extent of these changes are not known.

Prime Hook NWR General Flora Description

Refuge plant surveys conducted in 2004 and 2005 by Delaware Natural Heritage botanists provided data on vegetation conditions and species composition at that time (McAvoy et al. 2007). Natural habitats dominate refuge vegetation. Approximately 80 percent of habitat cover types represented by emergent wetlands are shaped by tidal and freshwater creek drainages that discharge into the Delaware Bay. These coastal marsh habitats are also interspersed with swamps, upland forests, shrublands, and grasslands representative of the Delmarva coastal plain ecosystem. NVCS cover typing delineated 37 distinct vegetation community types, including anthropogenic communities and water surface coverages (map 3-2). For more general discussions during the CCP development, a less detailed map combined the NVCS communities into 10 broad vegetation and land cover classes (map 3-6).

The flora of Prime Hook NWR is represented by 100 families and 247 genera. The largest families are the sedge family (Cyperaceae) with 60 taxa and 11 genera, followed by the aster family (Asteraceae) with 57 taxa and 34 genera, and the grass family (Poaceae) with 45 taxa and 30 genera. The largest genera include Carex (28 taxa), Quercus (nine taxa), Eleocharis (eight taxa), Polygonum (eight taxa), Bidens (seven taxa), Eupatorium (seven taxa), Juncus (seven taxa), Asclepias (six taxa), Cyperus (six taxa), and Rhynchospora (six taxa) (McAvoy et al. 2007).

Map 3-6. General Refuge Vegetation Communities

The majority of refuge plants are perennial broadleaf herbs with 131 taxa, followed by annual broadleaf herbs with 58 taxa. Graminoids (grasses, sedges, and rushes) are a large component of the refuge's flora, equaling 112 taxa, (45 taxa of grasses, 60 taxa of sedges, and 7 taxa of rushes). Trees and shrubs are also very prominent in the flora, with 29 taxa of deciduous trees, 6 taxa of evergreen trees, 32 taxa of deciduous shrubs, and 5 taxa of evergreen shrubs. True ferns [e.g., cinnamon fern (Osmunda)] and their relatives [e.g., tree clubmoss (Lycopodium)] form a unique assemblage of the flora with 16 taxa.

Most of the refuge's flora is wetland plants (wetland indicator status of facultative-wet and obligate) represented by 236 taxa, compared to 189 that occur either occasionally in wetlands, or never occur in wetlands. Documented rare plants included 44 species (seven -S1, 20-S2, and 17-S3).

National Vegetation Classification Standard Refuge Communities

Thirty-four natural NVCS vegetation communities were found on Prime Hook NWR in addition to three anthropogenic communities (open lawn, agricultural field, and loblolly pine plantation) (table 3-4; map 3-2). The *Spartina* low marsh (1,685 acres) was the largest association and the buttonbush coastal plain pond was the smallest (1 acre). Four associations (*) were identified on the refuge that are unique in Delaware and found nowhere else in the State. These include the red maple/seaside alder (799 acres), pond pine woodland (8 acres), coastal bay shore/succulent beach (150 acres), and twig rush peat mat (10 acres) associations.

Table 3-4. List of NVCS Associations Mapped on Prime Hook NWR

Habitat Type Common Name	NVCS Association
Overwash dune	Spartina patens, Schoenoplectus pungens, Solidago sempervirens Herbaceous vegetation
Beachgrass/panicgrass dune grassland	Ammophila breviligulata, Panicum amarum Herbaceous vegetation
Atlantic Coast interdune swale	Morella cerifera, Spartina patens Shrubland
Interdunal switchgrass brackish depression	Morella cerifera, Panicum virgatum, Spartina patens Herbaceous vegetation
Mid-Atlantic maritime salt shrub	Baccharis halimifolia, Iva frutescens, Spartina patens Shrubland
Maritime red cedar woodland	Juniperus virginiana, Morella pensylvanica Woodland
Successional maritime forest	Prunus serotina, Sassafrass albidum, Amelanchier Canadensis, Quercus velutina, Smilax rotundifolia Forest
Southern red oak/heath forest	Quercus alba, Q. falcate (Pinus taeda), Gaylussacia frondosa Forest
Mesic coastal plain oak forest	Quercus falcate, Q. phellos/llex opaca Forest
Coastal loblolly pine	Pinus taeda, Morella cerifera, Vitis rotundifolia Forest
Mesic coastal plain rich forest	Liriodendron tulipifera, Quercus rubra, Fraxinus Americana/, Uvularia perfoliata Forest
Mesic coastal plain mixed hardwood forest	Fagus grandifolia, Quercus (alba,rubra), Liriodendron tulipifera /Polystichum acrostichoides Forest
Successional sweetgum forest	Liquidambar styraciflua Forest
Pond pine woodland*	Pinus serotina, Magnolia virginiana, Vaccinium corymbosum, Carex atlantica Woodland
Red maple/seaside alder swamp*	Acer rubrum, Alnus maritima Woodland
Coastal plain depression swamp	Liquidambar styraciflua, Acer rubrum, Quercus phellos/Leucothoe racemosa Forest

Habitat Type Common Name	NVCS Association
Coastal loblolly pine wetland forest	Pinus taeda, Morella cerifera, Osmunda regalis var. spectabilis Forest
Atlantic white-cedar swamp	Chamaecyparis thyoides, Alnus maritima Woodland
Cottonwood swamp	Populus heterophylla, Acer rubrum, Quercus palustris, Liquidambar styraciflua Forest
Atlantic Coast wild rice marsh	Zizania aquatica Herbaceous vegetation
Cattail brackish marsh	Typha angustifolia, Hibiscus moscheutos Herbaceous vegetation
Brackish meadow	Panicum virgatum, Spartina patens Herbaceous vegetation
Pickerelweed marsh	Peltandra virginica, Pontedaria cordata Herbaceous vegetation
Pond lily marsh	Nuphar lutea ssp. advena Herbaceous vegetation
Cattail marsh	Typha anustifolia, latifolia, Schoenoplectus spp. Sparse vegetaion
Coastal bay shore/succulent beach*	Sesuvium maritimum, Atriplex spp., Suaeda spp. Sparse vegetation
River seedbox marsh	Ludwigia leptocarpa Semipermanently flooded herbaceous vegetation
Twig rush peat mat community*	Cladium mariscoides, Eriocaulon decangulare, Eriophorum virginicum Herbaceous vegetation
Water willow shrub swamp	Decodon verticillatus Semipermanently flooded shrubland
Buttonbush coastal plain pond	Cephalanthus occidentalis, Polygonum hydropiperoides, Panicum verrucosum Shrubland
Brackish tidal creek shrubland	Morella cerifera, Baccharis halimifolia, Eleocharis fallax Shrubland
Spartina high salt marsh	Spartina patens, Distichlis spicata (Juncus gerardii) Herbaceous vegetation
Spartina low salt marsh	Spartina alterniflora/ (Ascophyllum modosum) Herbaceous vegetation
Salt panne	Salicomia (virginica, bigelovii, maritima), Spartina alterniflora Herbaceous vegetation

We have listed the NVCS community associations and habitat descriptions that apply to each of the four refuge management units. These vegetation inventories and resulting maps represent the best available information regarding vegetation cover on the refuge. As stated above, we recognize that the information is already outdated for portions of our managed wetland impoundments that have been affected by recent coastline changes. Detailed NVCS maps for each refuge unit are found in the habitat management plan (HMP; appendix B).

Vegetation in Refuge Management Units

NVCS Vegetation Communities in Management Unit I

Unit I totals 1,624.9 acres [657.5 ha (table 3-5)]. Of the total acres, 1,504.7 acres (608.9 ha) are natural communities and 120.2 acres (48.6 ha) are anthropogenic communities. Unit I receives tidal, brackish water inputs from Slaughter Creek, which results in the development of Spartina low salt marsh, which is the largest vegetation community in Unit I. A small wax-myrtle shrub swamp, located at the south end of the unit, is the smallest vegetation community mapped. Part of this unit experienced an arson-set marsh fire under high wind conditions (45 + mph) on March 10, 2002, that burned approximately 1,500 acres.

Table 3-5. Natural and Anthropogenic Communities in Management Unit I

Natural Community	Unit I acreage (ha)
Atlantic Coast interdune swale	0.3 (0.1)
Beachgrass-panicgrass dune grassland	12.5 (5.1)
Brackish tidal creek shrubland	73.9 (29.9)

Natural Community	Unit I acreage (ha)
Coastal loblolly pine wetland forest	34.2 (13.8)
Coastal plain depression swamp	39.9 (16.1)
Marsh	33.2 (13.4)
Mesic coastal plain oak forest	49.6 (20.1)
Mesic rich forest	10.6 (4.3)
Mid-Atlantic maritime salt shrub	10.8 (4.4)
Overwash dune	5.1 (2.0)
Successional sweetgum forest	31.2 (12.6)
Spartina high salt marsh	75.2 (30.4)
Spartina low salt marsh	982.0 (397.4)
Water	146.2 (59.2)
Natural Community Total	1,504.7 (608.9)
Anthropogenic Community	
Agricultural Field	25.6 (10.4)
Northeastern Successional Shrubland	90.1 (36.4)
Road	4.5 (1.8)
Anthropogenic Community Total	120.2 (48.6)
Unit 1 Total	1,624.9 (657.5)

NVCS Vegetation Communities in Management Unit II

Unit II is just south of Unit I and is an impounded, nontidal freshwater system that is manipulated by water control structures. Freshwater input is from Slaughter Creek, which flows from the west. Total acreage of Unit II is 1,997.5 acres (808.3 ha), of which 1,681.8 acres (680.6 ha) are natural communities and 315.7 acres (127.7 ha) are anthropogenic communities (table 3-6). The generic marsh cover type is the largest vegetation community and the smallest is the maritime red cedar woodland. As of 2006, this unit is being overrun (approximately 100 acres) by river seedbox (Ludwigia leptocarpa), a native plant of the south, but is considered nonnative in Delaware; it has invasive characteristics at the refuge. Furthermore, storms in 2008 and 2009 created overwashes along the coast of Unit II, which have formed inlets. The resulting flow of saltwater into Unit II killed much of the freshwater vegetation that was present when the NVCS mapping was done. This list represents a baseline inventory of cover types in Unit II as of 2005 when the mapping work was conducted.

During late February and early March 2010, an algal bloom started in the most southern areas of Unit II, adjacent to Prime Hook Beach Road. By the end of May, the algal bloom had continued to expand, covering about 700 acres in Unit II and 300 acres in Unit III. This algae has been identified as Cladophora, a genus of reticulated filamentous Ulvophyceace (green algae) found naturally along coastline habitats within the littoral zone (open water areas near shorelines). A common component of freshwater ecosystems, Cladophora can provide food and shelter for invertebrates and small fish. Problems arise when environmental conditions of light, substrate, and nutrients (especially phosphorus) suddenly

change and become favorable for luxuriant growth of algal mats over extensive areas. This is the first time such a nuisance bloom has occurred on the refuge. *Cladophora* itself does not present a risk to human health but decaying *Cladophora* can promote bacterial growth and a pungent septic odor like sewage. Nuisance *Cladophora* outbreaks indicate an ecosystem under stress.

Table 3-6. Natural and Anthropogenic Communities in Management Unit II

NVCS - Natural Community	Unit II acreage (ha)	
Atlantic Coast interdune swale	20.1 (8.1)	
Beachgrass-panicgrass dune grassland	22.6 (9.1)	
Brackish tidal creek shrubland	3.3 (1.3)	
Coastal plain depression wwwamp	47.2 (19.1)	
Maritime red cedar woodland	1.9 (0.8)	
Generic marsh	918.9 (371.8)	
Mesic coastal plain oak forest	99.0 (40.0)	
Mid-Atlantic maritime salt shrub	7.2 (2.9)	
Overwash dune	4.2 (1.7)	
Successional maritime forest	71.3 (28.8)	
Successional sweetgum forest	9.4 (3.8)	
Water	476.7 (192.9)	
Natural Community Total	1,681.8 (680.6)	
Anthropogenic Community		
Agricultural field	221.8 (89.8)	
Northeastern successional shrubland	82.2 (33.2)	
Open lawn	0.2 (0.1)	
Road	11.5 (4.6)	
Anthropogenic Community Total	315.7 (127.7)	
Unit II Total	1,997.5 (808.3)	

NVCS Vegetation Communities in Management Unit III

Unit III is the largest of the units and lies between Unit II and Unit IV. Like Unit II, it has been managed as a nontidal freshwater system since the mid-1980s. It is 4,431.0 acres (1,793.1 ha), of which 3,822.6 acres (1,546.9 ha) are natural communities and 608.4 (246.2 ha) are anthropogenic communities (table 3-7). The generic marsh is the largest cover type and an overwash dune at the north end of the Unit is the smallest. Generic marsh consists of various freshwater and brackish wetland species, mostly annuals, which can vary each year based on growing conditions. Biologically and ecologically, Unit III is the most important of all the units. (Note: Generic marsh and open water roughly correspond to impounded wetland areas.) Unit III supports three vegetation communities that are currently known in Delaware only from Prime Hook NWR. These include the twig rush peat mat, pond pine woodland, and red maple-seaside alder woodland. Prime Hook Creek flowing west to east roughly divides this unit into a northern half and southern half. This unit contains the largest amount of anthropogenic communities at 608.4 acres (246.2 ha), more than the other three units combined.

Table 3-7. Natural and Anthropogenic Communities in Management Unit III

NVCS – Natural Community	Unit III acreage (ha)
Atlantic Coast interdune swale	15.8 (6.4)
Atlantic white cedar-seaside alder woodland	9.8 (4.0)
Brackish tidal creek shrubland	1.3 (0.5)
Buttonbush coastal plain pond	0.8 (0.3)
Coastal loblolly pine forest	41.5 (16.8)
Coastal loblolly pine wetland forest	56.3 (22.8)
Coastal plain depression swamp	248.7 (100.6)
Interdunal switchgrass brackish depression	0.7 (0.3)
Loblolly pine plantation	10.6 (4.3)
Loblolly pine-sweetgum semi-natural forest	39.0 (15.8)
Maritime red cedar woodland	7.8 (3.2)
Marsh	1314.7 (532.0)
Mesic coastal plain mixed hardwood forest	19.2 (7.8)
Mesic coastal plain oak forest	43.8 (17.7)
Mesic rich forest	24.5 (9.9)
Mid-Atlantic maritime salt shrub	1.5 (0.6)
Overwash dune	0.2 (0.1)
Peat mat	9.0 (3.6)
Pond pine woodland	7.2 (2.9)
Red maple-seaside alder woodland	699.3 (283.0)
Reed canarygrass eastern marsh	1.9 (0.7)
Southern red oak/heath forest	289.1 (117.0)
Successional maritime forest	90.6 (36.6)
Successional sweetgum forest	88.0 (35.6)
Swamp cottonwood coastal plain pond	1.5 (0.6)
Water	797.9 (322.7)
Water-willow shrub swamp	2.2 (0.9)
Natural Community Total	3,822.6 (1,546.9)
Anthropogenic Community	
Agricultural field	507.1 (205.2)
Building	0.3 (0.1)
Northeastern successional shrubland	73.4 (29.7)
Open lawn	5.0 (2.0)
Parking lot	1.6 (0.6)
Road	21.0 (8.5)
Anthropogenic Community Total	608.4 (246.2)

NVCS Vegetation Communities in Management Unit IV

Unit IV is the southernmost management unit and is the smallest of all the units with a total area of 1,176.4 acres (476.0 ha), of which 1,111 acres (449.6 ha) are natural communities and 65.3 acres (26.4 ha) are anthropogenic communities (table 3-8). Unit IV receives tidal and brackish input from the Broadkill River and as a result, the largest natural community in Unit IV is the *Spartina* low salt marsh. The smallest natural community is an interdunal switchgrass brackish depression. A coastal bay shore/succulent beach is located within the impounded portion of Unit IV and is covered under the generic marsh category. Unit IV at Prime Hook NWR is the only known location for this community in the State of Delaware.

Table 3-8. Natural and Anthropogenic Communities in Management Unit IV

NVCS - Natural Community	Unit IV acreage (ha)
Atlantic coast interdune swale	30.5 (12.3)
Brackish tidal creek shrubland	17.7 (7.1)
Coastal loblolly pine forest	9.7 (3.9)
Interdunal switchgrass brackish depression	5.7 (2.3)
Maritime red cedar woodland	66.2 (26.8)
Marsh	4.1 (1.6)
Mid-Atlantic maritime salt shrub	40.4 (16.3)
Spartina high salt marsh	7.8 (3.1)
Spartina low salt marsh	774.8 (313.5)
Successional maritime forest	22.0 (8.9)
Water	132.2 (53.5)
Natural Community Total	1,111.1 (449.6)
Anthropogenic Community	
Building	0.2 (0.1)
Northeastern successional shrubland	58.7 (23.7)
Road	6.4 (2.6)
Anthropogenic Community Total	65.3 (26.4)
Unit IV Total	1,176.4 (476.0)

Federal and State-Listed Plants and Communities

In addition to producing high quality vegetation cover maps of the refuge, the Service contracted the DNHP to collect baseline data on rare, endangered, or threatened flora and fauna. During 2004 and 2005, rare plant surveys were conducted through areas that mapped rare vegetation community elements, and zoological surveys were conducted that assessed the presence and location of rare herpetafauna, odonates, lepidopterans, small mammals, and other invertebrates. A final report summarizing composite data was submitted to the Service in June 2007 (McAvoy et al. 2007).

Modern scientific resource programs using the principles of conservation biology are premised on understanding and mapping the elements of rarity across the landscape. Determining which plants and animals are thriving and which are rare or declining is crucial for targeting conservation actions toward those species and habitats of greatest conservation need. The rankings provide an estimate of extinction risk to protect species before they become listed as threatened or endangered. Status is assessed and documented at three geographic scales: global (g), national (N), and state (S). Status assessments are based on the best available information and consider a variety of factors, such as abundance, distribution, population trends, and threats.

Exemplary Natural Communities

Exemplary natural communities are those that have been minimally impacted by humans and contain an exceptional diversity of rare plant species. The most significant community found on the refuge was the twig rush peat mat. These sites (six were mapped by McAvoy and Coxe 2007) support many State rare plant species (table 3-9) and occur in open water within a shrub-dominated swamp matrix. This unique habitat develops on deep, mucky, peat that appears to float (true "quaking bog"). Of the six quaking bogs inventoried and mapped, the most exemplary was the Prime Hook Bog. The Prime Hook Bog is about 1.5 acres in size and is floristically diverse with 66 species and varieties documented. Twig rush sedge (*Cladium mariscoides*) is the dominant herb associated with many rare plants (24 species), including several insectivorous plants like purple pitcherplants, round-leaf sundew, fibrous bladderwort, and southern bladderwort. In addition, a subspecies new to the flora of the State of Delaware and the Delmarva Peninsula was discovered here: bushy bluestem (*Andropogon glomeratus* var. *hirsutior*).

Table 3-9. State Rare plants associated with Twig Rush Peat Mat Community on Prime Hook NWR

Scientific Name	Common Name	State Rank	Habit & Duration	Wetland Indicator Status
Alnus maritime	Delmarva alder	S3	deciduous shrub	OBL
Andropogon glomeratus var. hirsutior	bushy bluestem	S1	perennial grass	FACW ⁺
Bartonia paniculata	twining bartonia	S2	annual broadleaf herb	OBL
Bidens coronata	tickseed sunflower	S3	annual broadleaf herb	OBL
Bidens mitis	small-fruit beggar-ticks	S2	annual broadleaf herb	OBL
Cyperus diandrus	umbrella flatsedge	S1	annual sedge	FACW
Drosera rotundifolia	round-leaf sundew	S2	perennial grass	OBL
Eleocharis robbinsii	Robbins spike-rush	S3	perennial grass	OBL
Eriocaulon decangulare	ten-angle pipewort	S1	per broadleaf herb	OBL
Eriophorum virginicum	tawny cotton-grass sedge	S1	perennial sedge	OBL
Eriocaulon parkeri	Parker's pipewort	S2	perennial sedge	OBL
Fuirena pumila	hairy umbrella-sedge	S2	annual sedge	OBL
Fuirena squarrosa	dwarf umbrella sedge	S3	perennial sedge	OBL
Juncus pelocarpus	brown-fruited rush	S2	per broadleaf herb	OBL
Lycopus amplectens	sessile-leaved bugleweed	S2	perennial broadleaf herb	OBL
Pogonia ophioglossoides	rose pogonia	S2	per broadleaf herb	OBL
Rhynchospora alba	white beakrush	S2	perennial sedge	OBL
Rhynchospora scirpoides	long-beaked beakrush	S2	perennial annual	OBL
Sagittaria engelmanniana	Engelmann's arrowhead	S2	perennial aquatic herb	OBL

Scientific Name	Common Name	State Rank	Habit & Duration	Wetland Indicator Status
Sagittaria graminea	grass-leaf arrowhead	S2	per aquatic herb	OBL
Sarracenia purpurea	purple pitcher-plant	S2	per broadleaf herb	OBL
Spiranthes cemua	nodding ladies'-tresses	S3	perennial broadleaf herb	FACW
Utricularia fibrosa	fibrous bladderwort	S2	per aquatic herb	OBL
Utricularia juncea	southern bladderwort	S2	per. broadleaf herb	OBL

Other Rare Plant Communities

Survey data identified a diverse assemblage of rare flora and fauna in the following refuge forest community types: red cedar maritime forest, coastal plain depression swamp, Atlantic white cedar/seaside alder saturated forest, swamp cottonwood coastal plain seasonal pond, and coastal loblolly pine. Based on current knowledge the red-maple/seaside alder woodland occurs only at Prime Hook NWR and may not occur anywhere else in Delaware or North America. Other rare and unique communities mapped on the refuge include the coastal bay/succulent beach and pond pine wetland communities.

Red Maple/Seaside Alder Community

This community is typified by the dominance of red maple in the overstory and seaside alder on the edges and in the understory within a swamp environment of standing water. The substrate is peat and muck characterized by hummock-and-hollow microtopography. The shrub layer consists of water willow, sweet pepperbush, southern bayberry, and occasionally buttonbush and fetterbush. The herbaceous layer forms on hummocks and hollows and is dominated by royal fern, northern marsh St. John's wort, cardinal flower, weak stellate sedge, three-way sedge, and mild water-pepper.

Rare plant species that occur in this community include seaside alder, Mitchell's sedge, green-fringe orchis, and gibbous grass. Seaside alder occurs on hummocks along the edges of open water, green-fringe orchis is found at base of trees within the understory and blooms in mid-summer, and Mitchell's sedge is found within the interior of this community growing on hummocks in the shade of the understory. The gibbous grass grows in sun and shallow water on the edges of this community and at times forms dense, pure stands. For a complete description of all NVCS vegetation alliances and associations mapped on the refuge see the NatureServe 2006 report in McAvoy et al. 2007.

Coastal Bay Shore/Succulent Bush

This community is dominated by sea purslane with patches of spearscale, panic beachgrass, barnyard grass, brackish sprangletop, small spike-rush, and salt marsh fleabane. Although this community is located within a 200-acre impoundment in Unit IV, it is surrounded by salt marsh habitats and is often irregularly flooded by storm tides from the Broadkill River and Delaware Bay waters. As to its current Statewide distribution, this community is not known to occur anywhere else in Delaware.

Other rare plants found on the refuge are included in table 3-10. Within the coastal plain depression swamp community type about 25 individuals of the State-rare cattail-sedge (Carex typhina, S3) in Unit III and scattered colonies of slender blue-flag iris (Iris prismatica, S2) were recorded by DNHP. Both species are growing in closed canopy and would prefer more sun to expand populations (McAvoy and Coxe 2007). Several rare plants were inventoried in Atlantic white cedar/seaside alder saturated forest growing in association with Atlantic white cedar. These species included: seaside alder, (Alnus maritima,

S3, G1), coast sedge (Carex exilis, S1), bayonet rush (Juncus militaris, S2), and flattened pipewort (Eriocaulon compressum, S2) (McAvoy 2007). Within coastal loblolly pine wetlands, the southern twayblade orchid's (Listeria australis, S3) distribution and abundance is significant. Two locales have been documented, with 500 to 1,000 plants occurring between both locations. This species can easily be overlooked due to its small size (15 cm/6 inches) and ephemeral nature (blooms in early spring and persists for only a few weeks). Also growing here is Walter's greenbriar (Smilax walteri, S3), an uncommon woody vine in Delaware that is an obligate wetland species and prefers swampy habitats. The fruit of Walter's greenbriar is red in color, as opposed to other greenbriar species with black fruit.

Table 3-10. Other Rare Plants found on Prime Hook NWR

Scientific Name	Common Name	State Rank	Habit & Duration	Wetland Indicator Status
Asclepias lanceolata	lance-leaf orange milkweed	S1	perennial broadleaf herb	OBL
Bartonia paniculata	twining bartonia	S2	annual broadleaf herb	OBL
Carex exilis	coast sedge	S1	perennial sedge	OBL
Carex typhina	cattail sedge	S3	perennial sedge	FACW ⁺
Conoclinium coelestimun	blue boneset	S3	perennial broadleaf herb	FAC
Eriocaulon compressum	flattened pipewort	S2	perennial broadleaf herb	OBL
Helianthus angustifolius	swamp flower	S3	perennial broadleaf herb	FACW
Helianthus giganteus	tall sunflower	S3	perennial broadleaf herb	FACW
Hudsonia ericoides	golden heather	S1	evergreen shrub	UPL
Iris prismatica	slender blue-flag	S2	perennial broadleaf herb	OBL
Juncus militaris	bayonet rush	S2	perennial aquatic rush	OBL
Listeria australis	southern twayblade	S3	perennial broadleaf herb	FACW
Passiflora lutea	passionflower	S3	herbaceous vine	UPL
Platanthera lacera	green-fringe orchis	S3	perennial broadleaf herb	FACW
Polygonum ramosissimum	bushy knotweed	S3	annual broadleaf herb	FAC
Pyrrhopappus carolinianus	Carolina false-dandelion	S3	annual broadleaf herb	UPL
Smilax walteri	Walter's greenbriar	S3	woody vine	OBL
Utricularia radiate	small swollen bladderwort	S3	perennial aquatic herb	OBL

Moist-Soil Management and Production

Moist-soil management provides plant and animal foods that are a critical part of the diet of wintering and migrating waterfowl and shorebirds, and has been a significant part of wetland management of the project area of Prime Hook NWR for the last 20 years. Native moist-soil wetland plants provide seeds and other plant parts (leaves, roots, and tubers) that generally have low deterioration rates after flooding and provide substantial energy and essential nutrients to wintering waterfowl, unlike common agricultural grains (corn, mile, soybeans) and nonnative cover crops (Strader and Stinson 2005).

Moist-soil management also supports diverse and abundant populations of invertebrates, which are an important protein source for waterfowl, shorebirds, and other waterbirds. For the moist-soil impounded habitats on the refuge, the annual seed yield production and foraging values greatly vary in each of the sampled areas from year to year depending on weather, rainfall patterns, and

snow goose herbivory, which all affect moist-soil plant production, annual seed yields, and food availability for target bird species.

Water level manipulations make food resources available to waterfowl, shorebirds, and other wetland-dependent birds at critical times of the year. The plants and invertebrates available year-round in moist-soil impoundments provide food resources necessary for wintering and migrating birds to complete critical aspects of their annual cycles such as molt and reproduction.

During the past decade, the primary wetland habitat management focus of the refuge has been to increase the foraging carrying capacity of its impoundment complex for waterfowl and shorebirds using impoundment-specific strategies for water level manipulations (Fredrickson 1994). An integrated management approach using moist-soil management techniques has consistently generated annual seed production of moist-soil plants that provide a range from 689 to 2,630 pounds of native wetland plant seeds per acre within 4,000 acres of impounded marsh.

A seed estimator sampling technique was used to quantify annual moist-soil seed production as discussed in *Waterfowl Management Handbook*, chapter 13.4.5 entitled, "A Technique for Estimating Seed Production of Common Moist-soil Plants." For seven consecutive years, annual moist-soil seed production was monitored on the refuge within several impoundment subunits (PMH2A, PMH2C, PMH3A, PMH3B, PMH3D, and PMH4A), documenting the successful annual production of native plant food resources available to waterfowl and other wetland dependent bird species (table 3-11, Figure 3-1).

Table 3-11. Moist-Soil Production Data (Impoundments)

Comparison of Seed-Yields (lbs/acre) during Adverse Weather Conditions									
Year	1993	1994	1995	1996	1997	1998	1999		
PMH2A	1,442	3,020	2,229	2,290	1,574	1,567	962		
PMH2C	5,443	2,572	5,147	2,524	2,778	0	484		
РМН3А	0	1,671	2,891	872	1,740	458	1,159		
РМН3В	1,306	1,670	2,470	2,001	1,548	158	667		
PMH3D	0	0	799	648	949	948	596		
PMH4A	648	1,107	2,246	1,069	985	0	0		
Weather	WET	WET	NORM	WET	DRY	DRY**	DRY		
Total Avg. Production	2,209	2,008	2,630	1,567	1,596	522	645		

^{**} Extreme flood conditions in early winter followed by 6 months of extreme drought. {Mean for wet years: $X_{\text{wet}} = 1,928 \text{ lbs/acre}$ } {Mean for dry years: $X_{\text{dry}} = 921 \text{ lbs/acre}$ } {Grand Mean for all years = 1,425 lbs/acre}

Quantified seed yields were estimated by measuring a few dominant moist-soil plants: *Echinochloa walteri* (Walter's millet), *Cyperus esculentus* (nutsedge), *Leptochloa fasicularis* (Sprangletop), *Panicum dichloromiflorum* (Fall panicum), *Polygonum* sp. (smartweeds), and *Setaria* sp. (foxtail) (Laubhan and Fredrickson 1992). Therefore, seed production estimates were very conservative as calculated, using the data contained in Prime Hook NWR's Annual Marsh and Water Management Program Reports from 1993 through 2000.

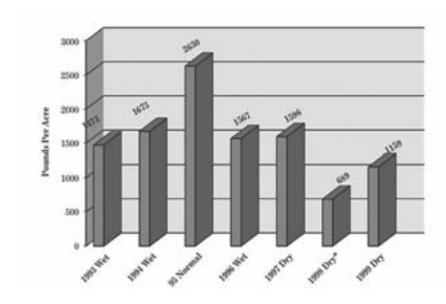


Figure 3-1. Average Seed Yields Sampled in Prime Hook NWR Impoundment Subunits

*Note: 1998 depressed seed yields were attributed to extreme drought conditions experienced during 6 months of the growing season preceded by a severe Nor'easter season.

Invasive Plants

The presences of invasive plants can have a major adverse impact on the biological integrity, diversity, and environmental health of refuge lands and other natural areas.

Of the 426 plant taxa listed in refuge plant inventories, 45 are nonnative, of which 10 are considered to be invasive and negatively impacting native habitats. These include spotted knapweed, Canada thistle, kudzu, mile-a-minute, Japanese honeysuckle, river seedbox, Japanese stilt-grass, reed canary grass, alien common reed, usually referred to in this document as *Phragmites*, and multiflora rose.

Spotted knapweed, Canada thistle, mile-a-minute, Johnson grass, and kudzu are restricted to roadside areas, fallow agricultural fields, edges of hedgerows, and early successional fields throughout the refuge. Japanese honeysuckle is ubiquitous throughout the refuge in mostly wooded habitats. Japanese stilt grass (about 50 acres) is mostly found on Oak Island, where it dominates the herbaceous layer.

River seedbox, a new addition to the flora of Delaware first discovered on the refuge in 2005, is an adventive plant species that has at times dominated portions of impounded marsh Unit III. River seedbox is native further south in the eastern United States but is not considered native in Delaware.

By fall 2006, this species had spread to about 500 acres in Units II and III impounded wetlands parallel to Prime Hook Beach Road. River seedbox is similar to alien common reed (*Phragmites australis*) in its aggressiveness. It is surmised that river seedbox became established on the refuge by waterfowl, who are attracted to this plant's large seeds. A single plant can produce thousands of seeds. One positive outcome of the May 11, 2008 nor'easter storm is that saltwater intrusion into river seedbox colonies has eliminated existing stands. As

with all aggressive invasive plants, we must remain vigilant to their presence and spread and continue our active programs to control them.

Reed canary grass, which is another adventive species in Delaware, dominates an old field habitat in Unit III (corners of field 328). This is the same location where the State-rare plant, lance-leaf orange milkweed, grows. The lance-leaf orange milkweed is abundant here and is the largest known population in the State (100+ individuals). Current annual mowing late in the growing season appears to be favoring this milkweed species by suppressing woody vegetation. Encroachment by reed canary grass should be monitored and hand-treated. Multi-flora rose is widespread throughout the refuge, growing in scattered areas within hedgerows, thickets, early successional fields

Phragmites control

Since the era of no management early in the refuge's history, *Phragmites* control has been a major concern and activity on Prime Hook NWR. From the late 1960s to 1982, *Phragmites* cover expanded by 34 percent and 3,000 acres of the refuge were covered in dense stands of *Phragmites* (Figure 3-2). In 1983, the refuge prepared an environmental assessment to deal with this problem. The assessment described a rehabilitation program to reclaim the 3,000 acres of *Phragmites*. The project's primary objectives were to chemically treat 2,000 acres in Unit II and 1,000 acres in Unit III and reduce the severe fire hazard near private property.

Figure 3-2. Condition of refuge marsh near Fowler Beach in 1978, showing dense stand of *Phragmites*

Prior to this rehabilitation project, the refuge conducted several years of research to find effective and economical methods to control *Phragmites* on Prime Hook NWR. Refuge staff began consulting and coordinating a refuge-specific *Phragmites* control program in June 1978 with

representatives of Delaware, New Jersey, North Carolina, and Rhode Island fish and game departments.

During the initial coordination sessions, Prime Hook NWR was selected as a test area to be sprayed with the then-new chemical glyphosate (N-phosphonomethyl glycine). A pilot spraying program was granted and experimental use permit (24-EUP-29) issued by the EPA in 1978. From 1976 to 1982, the before-mentioned State agencies, Monsanto researchers, and refuge personnel consulted and coordinated research activities by experimenting and assessing the effectiveness of herbicide treatments to control *Phragmites*.

Biologists with the Delaware Division of Fish and Wildlife provided technical and physical assistance in conducting trial applications of glyphosate to assess its efficacy in several wetland plots on the refuge. Prior to these field tests, Monsanto had also conducted extensive field studies on the effects of glyphosate on fish, wildlife, and vegetation. Short-term and long-term toxicity tests had

been conducted on a wide variety of aquatic, avian, and mammalian wildlife species. The aquatic test organisms included fresh and salt water species, as well as vertebrates and invertebrates. Waterfowl, upland game, fish, shrimp, and shellfish are some examples of the wildlife guilds included in these tests (USFWS 1983).

Acute (short-term) testing conducted on avian species, honey bees and fish showed that glyphosate was essentially non-toxic to these organisms. Chronic (long-term) toxicity tests also showed that glyphosate does not cause cancer, tumors, or reproductive problems in mammals (USFWS 1983). Further ecotoxicity studies of non-target impacts of glyphosate on birds, fish and aquatic life, mammals, and terrestrial invertebrates have demonstrated the same trends of minimal non-target effects (Sullivan et al. 1997). The most recent data for reregistration eligibility decision data for glyphosate maintain these past results of the nontoxicity of glyphosate on fish and wildlife species (NPIC 2011).

The timeframe for reclaiming Prime Hook NWR's marshes from *Phragmites* in the early 1980s was three years. From 1984 to 1986, approximately 3,000 acres were treated with consecutive double spray treatments between years and some prescribed fire used to reduce hazardous dead cane fuels. The program was a success.

Twenty years later, a second large-scale *Phragmites* control project was undertaken by the refuge to reduce or eliminate expanded stands located on refuge lands and private lands adjacent to the refuge. In close cooperation with the Delaware State Forestry Division and other partners, the refuge was funded for a three-year, million dollar wildland urban interface project, which was executed from 2002 to 2004. During that project, approximately 3,000 acres were treated on refuge lands and 1,000 acres were treated on private properties immediately adjacent to the refuge, resulting from the refuge partnering with 255 landowners in the Prime Hook, Broadkill, and Slaughter Beach communities.

Influence of Climate Change on Physical Environment and Refuge Management

Current Climate, and Local Coastal Storm Activity

Delaware's climate is generally mild, continental weather moderated by the effects of the Atlantic Ocean, causing brief periods of sustained hot or cold temperatures. Extreme temperatures are moderated by the Delaware Bay, the Atlantic Ocean and the Chesapeake Bay. On Prime Hook NWR, weather conditions are mild year-round with temperatures ranging from 32 °F to 80 °F. Normally, summer ocean breezes keep the refuge cooler than inland areas and most winter days are mildly attenuated by the same breezes.

Annual and seasonal precipitation is highly variable. Average annual refuge rainfall is 41.98 inches. Snowfall is usually light, averaging 10 to 15 inches per year. Prevailing winds from March through October are from the northwest except during summer months when they become more southerly. Prevailing winds from November through February are northeast. Average annual wind speed is about 9 miles per hour, but winds can reach 50 to 60 miles per hour or higher during summer thunderstorms, hurricanes, or intense winter northeasters. These climatic conditions correspond to USDA plant hardiness zone 7a. Native plant and ecological restoration biologists refer to the USDA zones for guidance in selecting appropriate species and planting times.

The entire refuge lies within Delaware's coastal zone and is subject to periodic flooding by coastal storms. Most of the refuge lies within the 100-year floodplain. The refuge's coastal environments such as beaches, barrier islands, wetlands and